Football数据集可视化处理——gephi可视化处理数据

2023-10-06 21:59

本文主要是介绍Football数据集可视化处理——gephi可视化处理数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#1 football数据集的文件格式
根据如图所示football数据集和的文件格式如下所示:
下图表示football数据集节点部分信息
这里写图片描述
下图表示football数据集边的部分信息
这里写图片描述
根据上述两个图中的格式对football数据集的格式介绍可以介绍为如下所示:

Creator "Mark Newman on Sat Jul 22 05:32:16 2006"
graph
[node[id **value **label ****]...node[id **value **label ****]edge[id **value **label ****]...edge[id ***value **label ****]
]

#2 football数据集文件格式的转化
根据上述的football文件,我们将数据文件转化成两个文件,这两个文件分别用来存储football数据集的边信息和节点信息,对football数据集文件的处理如下。
##2.1 football数据集节点信息文件
根据gephi通过csv导入信息的需要,我们将数据信息处理成如下的数据集节点文件格式:

Id Label Value
1  Tom   3
2  Bob   4

在football数据集中将football.gml文件处理得到的结果如下所示:
这里写图片描述
其中:

Id:用于标识唯一的一个点
Label:标识节点的标签或者是名称
Value:标识节点的所属的社区。

##2.2 football数据集边信息文件
根据gephi通过csv导入数据的格式,我们分为有向图和无向图两种数据格式,对于有向图的导入数据格式如下所示:

Source Target Weight
1 3 2
2 4 1
根据上述公式:
Source:表示源节点
Target:表示目的结点
Weight:表示对应的边的权重

在无向图的导入中需要加入Type类型得出的数据格式如下所示:

Source Target Weigth Type
1 3 2 Undirected
2 4 1 Undirected

如下图所示为football数据集的数据个格式,football数据集是无权图因此没有有weight。
这里写图片描述

在football数据集的616条边中有三条边是重复出现的分别为

28 18
85 4
100 15

在通过gephi对这些边进行模块化社区划分运算的时候需要将这些边删除,否则无法运行。
##2.3 对football.gml处理代码

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;int main()
{FILE* inputfile = NULL;FILE* nodefile = NULL;FILE* edgefile = NULL;inputfile = fopen("football.gml","r");nodefile = fopen("nodefile.txt","w");edgefile = fopen("edgefile.txt","w");fprintf(nodefile, "Id Label Value\n");fprintf(edgefile,"Source Target Type\n");char strLine[1024];int i = 0;int node = 0;int edge = 0;//char nodeinfo[100];char edgeinfo[100];while(!feof(inputfile)){fgets(strLine,1024, inputfile);if(strncmp(strLine+4,"id",2)==0 ){char id[5];char label[50];char value[5];memset(label,0,50);int idint = 0, valueint = 0;int copylen = 0;copylen = strlen(strLine) - 8;strncpy(id,strLine+7,copylen);idint = atoi(id)+1;fgets(strLine,1024, inputfile);copylen = strlen(strLine) - 13;strncpy(label,strLine+11,copylen);fgets(strLine,1024, inputfile);copylen = strlen(strLine) - 10;strncpy(value,strLine+10,copylen);valueint = atoi(value)+1;//cout << valueint << endl;fprintf(nodefile,"%d %s %d\n",idint,label,valueint);}if(strncmp(strLine+4,"source",6)==0){char target[5];char source[5];int sourceint = 0,targetint = 0;memset(target,0,5);memset(source,0,5);int copylen = 0;copylen = strlen(strLine)-12;strncpy(source,strLine+11,copylen);sourceint = atoi(source)+1;fgets(strLine,1024, inputfile);copylen = strlen(strLine)-12;strncpy(target,strLine+11,copylen);targetint = atoi(target)+1;fprintf(edgefile,"%d %d undirected\n",sourceint,targetint);}}fclose(nodefile);fclose(edgefile);return 0;
}

#3 gephi点表和边表的导入并生成football图像
(1)点击文件->Import spreadsheet如下图所示:
这里写图片描述

(2)选择需要导入的文件进行数据导入
这里写图片描述
注意选择导入的是边表格还是点表格

(3)点击模块化
这里写图片描述

(4)设置参数为0.4
这里写图片描述

(5)选择节点的渲染方式为Modularity Class
这里写图片描述
(6)得到football的社区划分和真实社区对比

football数据集通过gephi进行社区划分的结果(不带有边的图)
这里写图片描述
football数据集真实社区的结果(不带有边的图)
这里写图片描述
football数据集通过gephi进行社区划分的结果(带有边的图)
这里写图片描述
football数据集真实社区的结果(带有边的图)
这里写图片描述

根据上述的结果我们可以对比得到gephi生成的社区和真实社区的差别,并且最终得到如下所示的两张对比图片。

gephi基于模块度生成社区划分的图片
这里写图片描述
football给出的标签的真实社区图片
这里写图片描述
football数据集以及相关数据集下载地址
CSDN下载链接

这篇关于Football数据集可视化处理——gephi可视化处理数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154135

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl