Redis 内存淘汰策略深度解析(最新推荐)

2025-03-10 17:50

本文主要是介绍Redis 内存淘汰策略深度解析(最新推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand...

Redis 作为高性能的内存数据库,其内存资源的高效管理直接关系到系统的稳定性yorckf和性能。当 Redis 的内存使用达到配置的最大值(maxmemory)时,新的写入操作将触发内存淘汰机制(Eviction Policy),以释放空间存储新数据。本文将深入探讨 Redis 的内存淘汰策略、实现原理、适用场景及最佳实践。

一、 内存淘汰策略概述

Redis 的内存淘汰策略决定了在内存不足时,如何选择需要删除的键来释放空间。这些策略可以分为两大类:

  • 基于过期时间的淘汰​(volatile-*):仅针对设置了过期时间的键。
  • 全局淘汰​(allkeys-*):针对所有键,无论是否设置过期时间。

Redis 支持以下 8 种内存淘汰策略

noeviction:默认策略,禁止写入新数据,直接返回错误。
volatile-lru:淘汰最近最少使用(LRU)的设置了过期时间的键。
volatile-lfu:淘汰最不经常使用(LFU)的设置了过期时间的键。
volatile-random:随机淘汰设置了过期时间的键。
volatile-ttl:优先淘汰剩余生存时间(TTL)最短的键。
allkeys-lru:淘汰所有键中最近最少使用的键。
allkeys-lfu:淘汰所有键中最不经常使用的键。
allkeys-random:随机淘汰任意键。

二、内存淘汰策略详解

2.1 ​noeviction(不淘汰)​

​行为:当内存不足时,拒绝所有写入命令(如 SET、LPUSH),但允许读取操作。
​适用场景:适用于数据不可丢失的场景(如持久化存储),需确保内存足够或配合持久化机制。
缺点:若内存不足且无持久化,可能导致服务不可用。

2.2 ​LRU(Least Recently Used)​

​原理:淘汰最近最久未被访问的键。
​Redis 实现:Redis 使用近似 LRU 算法,通过随机采样(默认取 5 个键)选择最久未使用的键,而非遍历所有键,以减少计算开销。
​适用场景:适用于缓存场景,优先保留热点数据。
​命令示例

CONFIG SET maxmemory-policy volatile-lru  # 针对带过期时间的键
CONFIG SET maxmemory-policy allkeys-lru   # 针对所有键

2.3 ​LFU(Least Frequently Used)​

​原理:淘汰访php问频率最低的键(Redis 4.0 引入)。
​Redis 实现:通过计数器统计键的访问频率,并随时间衰减历史计数,避免长期累积导致无法淘汰旧键。
​适用场景:适合长期缓存,如高频访问的静态数据。
​命令示例

CONFIG SET maxmemory-policy volatile-lfu  # 针对带过期时间的键
CONFIG SET maxmemory-policy allkeys-lfu   # 针对所有键

2.4 ​TTL(Time To Live)​

​原理:优先淘汰剩余生存时间(TTL)最短的键。
​适用场景:适用于明确知道键生命周期的场景(如临时会话数据)。
限制:仅对设置了过期时间的键生效。
​命令示例

CONFIG SET maxmemory-policy volatile-ttl

2.5 ​Random(随机淘汰)​

​原理:随机选择键进行淘汰。
​适用场景:内存压力大且数据重要性均等时,快速释放内存。
​命令示例

CONFIG SET maxmemory-policy volatile-random  # 针对带过期时间的键
CONFIG SET maxmemory-policy allkeys-random   # 针对所有键

三、 内存淘汰的底层实现

3.1 ​LRU/LFU 的近似算法

  • Redis 通过 ​evictionPoolEntry​结构维护候选淘汰键池。每次淘汰时,随机采样一组键,更新其访问时间或频率信息,选择最不活跃的键删除。
  • ​LRU 时钟:Redis 使用全局 24 位时钟(精度为秒)记录键的最近访问时间。内存中每个对象存储与全局时钟的差值(lru字段),而非精确时间戳。
  • ​LFU 计数器:每个键的 lru 字段被拆分为两部分:
    • 高 16 位:最近访问时间的分钟级精度。
    • 低 8 位:访问频率计数器(0~255),通过概率递增,随时间衰减。

3.2 ​淘汰流程

  • 客户端执行写入命令触发内存检查。
  • Redis 检查 maxmemory 是否已超出。
  • 根据配置的策略选择待淘汰键。
  • 删除键并触发相javascript关事件(如 evicted 通知)。

四、 如何选择合适的内存淘汰策略?

4.1 ​缓存场景

http://www.chinasem.cn推荐策略:allkeys-lru 或 allkeys-lfu
​理由:优先保留热点数据,最大化缓存命中率。

4.2 ​持久化存储

​推荐策略:noeviction(需确保内存足够或启用持久化)。
​替代方案:若允许部分数据丢失,可使用 volatile-lru 结合过期时间。

4.3 ​临时数据场景

​推荐策略:volatile-ttl
​理由:自动清理生命周期明确的数据(如验证码、会话信息)。

4.4 ​混合型数据

​推荐策略:allkeys-lru + 部分键设置过期时间。
​示例:电商系统中,商品详情用 allkeys-lru 缓存,购物车数据设置 TTL。

五、最佳实践与注意事项

5.1 ​配置建议

​设置合理的 maxmemory:通常为物理内存的 80%~90%,避免 OOM。
​监控内存使用:

INFO memory  # 查看内存指标(used_memory、maxmemory)
INFO stats    # 查看 evicted_keys(淘汰键数量)

5.2 ​避免大规模淘汰

​分片设计:通过集群分散数据,减少单个节点的内存压力。
​预热缓存:重启后预加载高频数据,避免冷启动时集中淘汰。

5.3 ​常见误区

volatile-ttl 不依赖惰性删除:该策略仅在内存不足时触发,仍需依赖定期/惰性删除清理过期键。
​LFU 计数器并非精确值:访问频率通过概率递增,适用于相对比较而非绝对计数。

六、总结

Redis 的内存淘汰策略是平衡内存使用与性能的关键机制。理解不同策略的原理和适用场景,结合业务需求合理配置,可显著提升系统的稳定性和效率。在高并发场景下,建议通过监控工具(如 RedisInsight、Prometheus)实时跟踪内存和淘汰指标,动态调整策略和资源配置。

通过本文的深度解析,希望您能掌握 Redis 内存淘汰的核心机制,并在实践中灵活运用,构建高效可靠的 Redis 服务。

参考资料

Redis 官方文档:https://redis.io/docs/reference/eviction/
《Redis 设计与实现》——黄健宏
Redis 源码解析(evict.c、object.c)

到此这篇关于Redis 内存淘汰策略深度解析的文章就介绍到这了,更多相关Redis 内存淘汰策略内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Redis 内存淘汰策略深度解析(最新推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153681

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.