Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

2025-01-18 04:50

本文主要是介绍Python 中 requests 与 aiohttp 在实际项目中的选择策略详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案...

        在 python 爬虫开发中,requests 和 aiohttp 是两个常用的库。requests 库提供了简洁而强大的 HTTP 请求接口,而 aiohttp 则是基于 asyncio 的异步 HTTP 客户端 / 服务器框架。本文将详细介绍这两个库的用法,并通过实际项目案例展示它们的应用

一、requests 库

安装和基本用法
使用 pip 命令可以轻松安装 requests 库:

pip install requests

安装完成后,可以使用以下代码发送 GET 请求:

import requests
response = requesjavascriptts.get('https://www.example.com')
print(response.text)

请求参数和头部信息
可以通过传递参数和头部信息来定制请求:

import requests
params = {'key1': 'value1', 'key2': 'value2'}
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get('https://www.example.com', params=params, headers=headers)
print(response.text)

响应处理
requests 库提供了丰富的响应处理方法,例如获取响应状态码、响应头部信息、响应内容等:

import requests
response = requests.get('hphpttps://www.example.com')
print(response.status_code)
print(response.headers)
print(response.text)

实际项目案例
以下是一个使用 requests 库爬取网页内容的简单示例:

import requests
response = requests.get('https://www.example.com')
if response.status_code == 200:
    print(response.text)
else:
    print('请求失败')

二、aiohttp 库

安装和基本用法
使用 pip 命令可以安装 aiohttp 库:

pip install aiohttp

安装完成后,可以使用以下代码发送 GET 请求:

import aiohttp
async def main():
    async with aiohttp.ClientSession() as session:
        async with session.get('https://www.example.com') as response:
            print(await response.text())
asyncio.run(main())

请求参数和头部信息
可以通过传递参数和头部信息来定制请求:

import aiohttp
async def main():
    async with aiohttp.ClientSession() as session:
        params = {'key1': 'value1', 'key2': 'value2'}
        headers = {'User-Agent': 'Mozilla/5.0'}
        async with session.get('https://www.example.com', params=params, headers=headers) as response:
            print(await response.text())
asyncio.run(main())

响应处理
aiohttp 库提供了异步的响应处理方法,例如获取响应状态码、响应头部信息、响应内容等:

import aiohttp
async def main():
    async with aiohttp.ClientSession() as session:
        async with session.get('https://www.example.com') as response:
            print(response.status)
            print(response.headers)
            print(await response.text())
asyncio.run(main())

实际项目案例
以下是一个使用 aiohttp 库爬取网页内容的简单示例:

import aiohttp
async def main():
    async with aiohttp.ClientSession() as session:
        async with session.get('https://www.example.com') as response:
            if response.status == 200:
                print(await response.text())
            else:
                print('请求失败')
asyncio.run(main())

三、requests 和 aiohttp 的rLdwgJi比较

  • 性能

requests 库是基于同步的,而 aiohttp 库是基于异步的。在处理大量并发请求时,aiohttp 库的性能通常比 requests 库更好。

  • 复杂性

aiohttp 库的使用相对复杂一些,需要对 asyncio 有一定的了解。而 requests 库的使用则相对简单。

  • 适用场景

requests 库适用于简单的爬虫场景,而 aiohttp 库适用于需要处理大量并发请求的复杂爬虫场景。

四、requests 和 aiohttp 的作用

  • requests

requests 是一个简洁且功能强大的 Python HTTP 库。它能够方便地发送各种 HTTP 请求(如 GET、POST 等),并对响应进行处理。

例如,在一个简单的新闻网站数据采集项目中,如果我们只需要按顺序获取少量网页内容,requests 就可以轻松胜任。

import requests
# 发送GET请求到新闻网站的某个页面
response = requests.get('https://news.example.com/article1')
if response.status_code == 200:
    # 处理获取到的新闻内容
    news_content = response.text
    print(news_content)
else:
    print('请求失败')
  • aiohttp

aiohttp 是基于 asyncio 的异步 HTTP 客户端 / 服务器框架。它专为异步编程设计,能够高效地处理大量并发的 HTTP 请求。

例如,在一个大规模的网络爬虫项目中,需要同时从多个不同的网页获取数据时,aiohttp 的异步特性可以显著提高效率。

import aiohttp
import asyncio
async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()
async def main():
    async with aiohttp.ClientSession() as session:
        tasks = []
        urls = ['https://page1.example.com', 'https://page2.example.com', 'https://page3.example.com']
        for url in urls:
            task = asyncio.ensure_future(fetch(session, url))
            tasks.append(task)
        responses = await asyncio.gather(*tasks)
        for response in responses:
            print(response)
asyncio.run(main())

五、在实际项目中的选择因素

1. 并发需求
requests:如果项目中的 HTTP 请求数量较少,并且不需要并发执行,例如一个简单的查询单个 API 获取数据的脚本,requests 是很好的选择。它的同步执行方式简单直观,代码易于理解和维护。
aiohttp:当需要同时处理大量的 HTTP 请求,如大规模的网络爬虫、对多个 API 进行批量数据获取等场景时,aiohttp 的异步特性能够充分发挥优势。例如,在爬取 100 个不同网页时,aiohttp 可以并发地发送请求,大大缩短总的执行时间。
2. 项目复杂度与维护成本
requests:对于初学者或者小型项目来说,requests 的使用非常简单。不需要深入理解异步编程概念,代码结构清晰。例如,一个小型的个人博客数据采集项目,只涉及到几个页面的数据获取,requests 可以快速实现功能,并且后续维护也比较容易。
aiohttp:由于涉及异步编程,aiohttp 的代码相对复杂一些。需要对 asyncio 库有一定的了解,包括事件循环、协程等概念。在大型项目中,如果团队成员对异步编程不够熟悉,可能会增加开发和维护的难度。但是在处理复杂的高并发场景时,它的性能提升可能值得投入额外的开发成本。
3. 性能要求
requests:在处理单个或少量顺序执行的 HTTP 请求时,requests 的性能足以满足需求。但是当并发请求数量增加时,由于其同步执行的特性,每个请求都需要等待前一个请求完成,可能会导致较长的等待时间。
aiohttp:在高并发场景下,aiohttp 能够利用异步 I/O 的优势,在等待一个请求的响应时可以去处理其他请求,从而显著提高整体http://www.chinasem.cn的性能。例如,在一个需要在短时间内获取大量网页数据的项目中,aiohttp 可以更快地完成任务。

六、总结

在实际项目中选择 requests 还是 aiohttp 取决于多个因素,包括并发需求、项目复杂度、维护成本以及性能要求等。如果是简单的、非并发的小项目,requests 是一个简单高效的选择;而对于有高并发需求、对性能要求较高且开发团队有能力处理异步编程复杂性的项目,aiohttp 则更为合适。

到此这篇关于Python 中 requests 与 aiohttp 在实际rLDwgJi项目中的选择策略的文章就介绍到这了,更多相关Python requests 与 aiohttp 内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于Python 中 requests 与 aiohttp 在实际项目中的选择策略详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153115

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订