Redis KEYS查询大批量数据替代方案

2025-01-01 03:50

本文主要是介绍Redis KEYS查询大批量数据替代方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序...

前言

在使用 Redis 时,KEYS 命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞 Redis 服务。本文将介绍SCAN命令、有序集合、哈希表和RediSearch模块四种替代 KEYS 的高效方案,以应对大批量数据的查询和管理。根据本人实际使用情况,查询Redis大批量数据的情况下推荐使用SCAN命令较好。

KEYS命令问题背景

KEYS 命令会遍历整个键空间,对于包含大量键的 Redis 实例,这可能导致以下问题:
高延迟:执行时间较长,影响其他命令的响应速度。
阻塞 Redis:在单线程模型下,KEYS 会阻塞 Redis 服务器,导致其他操作无法及时处理。
内存消耗:返回所有匹配的键可能会占用大量内存。
因此,在生产环境中应尽量避免使用 KEYS 命令。

替代方案

1.使用 SCAN 命令

理论介绍

SCAN 是一个增量迭代器,可以分批逐步遍历键空间,避免一次性加载所有键。它支持游标(cursor)机制,允许用户通过多次调用来完成完整的遍历。

优点

非阻塞:不会阻塞 Redis 服务器,适合在线环境。
低资源消耗:每次只返回少量键,减少内存压力。

缺点

结果集不固定:SCAN 的结果集不是固定的,可能会有重复或遗漏的键,特别是在键频繁变化的情况下。
额外参数:需要合理设置 COUNT 参数以平衡遍历速度和资源消耗。

示例代码

/**
 * scan命令测试
 * @author senfel
 * @date 2024/12/26 11:34
 * @return void
 */
@Test
public void scan() {
    try (Jedis jedis = new Jedis("localhost", 6379)) {
        String cursor = "0";
        ScanParams scanParams = new ScanParams().match("sys_dict:*").count(100);
        do {
            ScanResult<String> scanResult = jedis.scan(cursor, scanParams);
            for (String key : scanResult.getResult()) {
                System.out.println("Found key: " + key);
            }
       python     cursor = scanResult.getCursor();
        } while (!cursor.equals("0"));
    }
}

2. 使用有序集合(Sorted Set)

理论介绍

如果需要对键进行排序或范围查询,可以考虑将键存储在有序集合中,并为每个键分配一个唯一的分数(score)。这样可以通过 ZRANGE 或 ZREVRANGE 等命令高效地获取指定范围内的键。

优点

高效查询:支持快速的范围查询和排序。
灵活性:可以根据业务需求调整分数规则。

缺点

额外开销:需要维护有序集合,增加了写入操作的复杂度。

示例代码

/**
 * sortSet
 * @author senfel
 * @date 2024/12/26 11:51
 * @return void
 */
@Test
public void sortSet() {
    try (Jedis jedis = new Jedis("localhost", 6379)) {
        // 添加键到有序集合
        for (int i = 0; i < 100; i++) {
            jedis.zadd("sorted_keys", System.currentTimeMillis(), "senfel"+i);
        }
        // 获取前 10 个键
        Set<String> keys = jedis.zrange("sorted_keys", 0, 9);
        for (String key : keys) {
            System.out.println("Key from sorted set: " + key);
        }
    }
}

3. 使用哈希(Hash)

理论介绍

如果键具有相似的结构或属于同一类目,可以将它们存储在一个哈希表中,每个字段代表一个键。这样可以通过 HGETALL 或 HSCAN 来批量获取相关键。

优点

集中管理:便于批量操作和维护。
高效访问:哈希表提供了 O(1) 的查找性能。

缺点

适用范围有限:适用于键具有相同前缀或分类的情况。

示例代码

/**
 * useHash
 * @author senfel
 * @date 2024/12/26 11:55
 * @return void
 */
@Test
public void useHash() {
    try (Jedis jedis = new Jedis("localhost", 6379)) {
        for (int i = 0; i < 100; i++) {
            // 添加键到哈希表
            jedis.hset("user_data", "name"+i, "senfel"+i);
        }
        // 获取所有键值对
        Map<String, String> userData = jedis.hgetAll("user_data");
        for (Map.Entry<String, String> entry : userData.entrySet()) {
            System.out.println("User data: " + entry.getKey() + " -> " + entry.getValue());
        }
    }
}

4. 使用 Redis 模块(如 RediSearch)

理论介绍

Redis 模块扩展了 Redis 的功能,其中 RediSearch 提供了全文搜索和索引功能,能够高效地管理和查询大量数据。它支持复杂的查询语法和过滤条件。

RediSearch安装推荐使用docker

docker run --name redisearch -p 16379:6379 -v redis-data:/data redis/redis-stack-server:latest

优点

强大查询能力:支持全文搜索、模糊匹配等高级查询。
高性能:优化的索引结构保证了高效的查询性能。

缺点

依赖外部模块:需要安装和配置 Redis 模块。
学习成本:API 和配置相对复杂,需要一定的时间熟悉。

maven依赖

<dependency>
    <groupId>com.redislabs<IGOky/groupId>
    <artifactId>jredisearch</artifactId>
    <version>2.0.0</version>
</dependency>

示例代码

/**
 * useRediSearch 未安装RediSearch未测试
 * @author senfel
 * @date 2024/12/26 12:26 
 * @return void
 */
@Test
public void useRediSearch() {
    Client client = Client.create("localhost", 6379).connect();
    // 创建索引并添加文档
    client.ftCreate("idx", Schema.newBuilder()
            .addField(new TexChina编程tField("title"))
            .addField(new TextField("content"))
            .build());
    client.ftAdd("idx", "doc1", 1.0, Document.newDocument()
            .addField("title", "Redis Search")
            .addField("content", "Learn how to use Redis Search"));
    // 查询文档
    SearchResult result = client.ftSearch("idx", new Query("Redis"));
    for (Document doc : result.documents()) {
        System.out.println("Found document: " + doc.getId());
    }
    client.close();
}

总结

综上所述,Redis 大批量数据解决方案目前有SCAN命令、有序集合、哈希表、RediSearch扩展模块。一般对于Redis 大批量键遍历可以使用非阻塞低资源消耗的SCAN 命令,对于需要排序或范围查询的场景则使用有序集合,python对于键具有相同前缀或分类的情况可以使用哈希表,如果需要全文搜索或复杂查询则可以使用高性能强大查询能力的RediSearch。

以上就是Redis KEYS查询大批量数据替代方案的详细内容,更多关于Redis KEYS数据替代方案的资料请关注php编程China编程(www.chinasem.cn)其它相关文章!

这篇关于Redis KEYS查询大批量数据替代方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152879

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速