csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

2024-09-09 17:38

本文主要是介绍csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉
这也是自己独自做扩展欧几里得算法的题目
题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解
下面介绍一下exgcd的一些知识点:求ax + by = c的解
一、首先求ax + by = gcd(a,b)的解 这个只要用exgcd的模板就可以求出来,设求得的解为x0,y0,
那么其他解为x = x0 + b/gcd(a,b)*t; y = y0 - a/gcd(a,b);(t为任意整数)
二、如果c % gcd(a,b) 不为0,那么ax + by = c无解;否则ax + by = c的解表示为x1 = x0*c/(gcd(a,b)),y1 = y0*c/gcd(a,b)
那么其他解为x = x1 + b/gcd(a,b); y = y1 - a/gcd(a,b);
如果了解了这些知识点,那么就可以解这个题目了

代码如下(附注释):

#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<stdio.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>
#include<math.h>#define ll long long
#define inf 0x7fffffff
#define eps 1e-9
#define pi acos(-1.0)
#define P system("pause")
using namespace std;void gcd(ll a, ll b, ll &d, ll &x, ll&y)//扩展欧几里得的模板
{if(!b){d = a; x = 1; y = 0;          }    else{gcd(b, a%b, d, y, x);y -= x*(a/b);     }}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);ios::sync_with_stdio(false);int t;cin>>t;while(t--){ll n1,n2,f1,f2,d1,d2;ll d, x, y, temp;cin>>n1>>f1>>d1>>n2>>f2>>d2;//求d1*x - d2*y = f2- f1 ;// x属于0---n1-1,y属于0---n2-1 gcd(d1, -d2, d, x, y);   ll c = f2 - f1;if(c % d){cout<<"0\n"<<endl;continue;     }          ll x1, y1;x1 = x*(c/d);//d1*x - d2*y = f2- f1 的一组解 y1 = y*(c/d);//     cout<<x1<<" "<<y1<<endl; ll k1, k2;k1 = d2/abs(d);//y = kx + b中的k ,k > 0 k2 = d1/abs(d);if(x1 < 0 || y1 < 0)//求最小整数解 {int i = 1; while(1){if(x1 + k1*i >=0 && y1 + k2*i >=0)break; i++;           }      x1 = x1 + k1*i;y1 = y1 + k2*i;}else{int i = 1;while(1){if(x1 - k1*i < 0 || y1 - k2*i < 0)break;i++;           }    x1 = x1 - k1*(i-1);y1 = y1 - k2*(i-1);}//最小整数解为x1,y1 //    cout<<x1<<" "<<y1<<endl; if(x1 > n1-1 || y1 > n2 -1){cout<<0<<endl; continue;     }//ll t1,t2;t1 = (n1 - 1 - x1)/k1;//求的在[0,n1-1]区间内的解的个数t2 = (n2 - 1 - y1)/k2;//求的在[0,n2-1]区间内的解的个数  cout<<min(t1,t2)+1<<endl;}// P;                               return 0;    
}


这篇关于csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1151834

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印