【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

本文主要是介绍【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂

关键词提炼

#嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet

第一节:嵌入方程的类比与核心概念【尽可能通俗】

嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。
正如翻译机将一种语言转换成另一种语言,嵌入方程将自然语言转换成向量语言,使得机器能够进行后续的处理和分析。

第二节:嵌入方程的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
词向量(V)代表单词在向量空间中的表示,每个单词对应一个唯一的向量。就像每个人都有自己的身份证,每个单词也有一个独特的向量标识。
嵌入矩阵(E)一个包含所有词向量的矩阵,每一行代表一个单词的向量。就像一本词典,每一页都记录了一个单词的信息。
上下文窗口(C)在训练词向量时,考虑的单词周围的其他单词的范围。就像看一个字,不仅要看这个字本身,还要看它前后的字来理解它的意思。

2.2 优势与劣势【重点在劣势】

方面描述
优势能够将自然语言转换成机器可理解的数学形式,为后续的机器学习算法提供输入。能够捕捉单词之间的语义关系,使得机器能够进行更复杂的语言处理任务。
劣势嵌入方程的选择和训练过程较为复杂,需要大量的数据和计算资源。对于稀有词或新词,可能无法得到准确的向量表示。

2.3 与自然语言处理的类比

嵌入方程在自然语言处理中扮演着“桥梁”的角色,它连接了自然语言和机器学习算法,使得机器能够理解和处理人类的语言。就像桥梁连接了两岸,使得人们能够方便地通行。

在这里插入图片描述

第三节:公式探索与推演运算【重点在推导】

3.1 嵌入方程的基本形式

嵌入方程的基本形式可以表示为:

V = E ⋅ W V = E \cdot W V=EW

其中, V V V 是词向量的矩阵, E E E 是嵌入矩阵, W W W 是单词的one-hot编码矩阵。

3.2 具体实例与推演【尽可能详细全面】

假设我们有一个包含三个单词的词典:{“apple”, “banana”, “cherry”},每个单词用一个3维的向量表示。那么,我们的嵌入矩阵 E E E 可以表示为:

E = [ e a p p l e 1 e a p p l e 2 e a p p l e 3 e b a n a n a 1 e b a n a n a 2 e b a n a n a 3 e c h e r r y 1 e c h e r r y 2 e c h e r r y 3 ] E = \begin{bmatrix} e_{apple1} & e_{apple2} & e_{apple3} \\ e_{banana1} & e_{banana2} & e_{banana3} \\ e_{cherry1} & e_{cherry2} & e_{cherry3} \end{bmatrix} E= eapple1ebanana1echerry1eapple2ebanana2echerry2eapple3ebanana3echerry3

对于单词 “apple”,其one-hot编码 W a p p l e W_{apple} Wapple 为:

W a p p l e = [ 1 0 0 ] W_{apple} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} Wapple= 100

那么,单词 “apple” 的词向量 V a p p l e V_{apple} Vapple 可以通过嵌入方程计算得到:

V a p p l e = E ⋅ W a p p l e = [ e a p p l e 1 e a p p l e 2 e a p p l e 3 ] V_{apple} = E \cdot W_{apple} = \begin{bmatrix} e_{apple1} \\ e_{apple2} \\ e_{apple3} \end{bmatrix} Vapple=EWapple= eapple1eapple2eapple3

同理,我们可以得到其他单词的词向量。

在这里插入图片描述

第四节:相似公式比对【重点在差异】

公式/模型共同点不同点
嵌入方程都涉及将文本转换成向量表示。嵌入方程专注于单词或短语的向量表示,用于自然语言处理。
词袋模型(Bag-of-Words)词袋模型也是将文本转换成向量,但它是基于单词出现的频率,而嵌入方程考虑的是单词的语义关系。
TF-IDFTF-IDF也是文本向量化的一种方法,但它更侧重于单词在文档中的重要性,而嵌入方程更侧重于单词之间的语义关系。

第五节:核心代码与可视化

这段代码使用Python和TensorFlow库训练了一个简单的词嵌入模型,并绘制了词向量的散点图。通过可视化,我们可以直观地看到单词在向量空间中的分布。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.manifold import TSNE# Define the vocabulary and some sample sentences
vocabulary = ['apple', 'banana', 'cherry', 'dog', 'cat']
sentences = ["The apple is red","The banana is yellow","The cherry is red","The dog is brown","The cat is black"
]# Convert sentences to indices
tokenized_sentences = [[vocabulary.index(word) for word in sentence.split()] for sentence in sentences]# Define the embedding model using TensorFlow
embedding_dim = 3  # 3-dimensional embeddings
model = tf.keras.Sequential([tf.keras.layers.Embedding(input_dim=len(vocabulary), output_dim=embedding_dim, input_length=5)
])# Compile the model (not necessary for embedding generation, but useful for training)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')# Get the embedding weights (this is the embedding matrix)
embedding_matrix = model.layers[0].get_weights()[0]# Print the embedding matrix
print("Embedding Matrix:\n", embedding_matrix)# Use TSNE to reduce the dimensionality of the embedding vectors for visualization
tsne = TSNE(n_components=2, random_state=0)
embedding_vectors_2d = tsne.fit_transform(embedding_matrix)# Create a DataFrame for visualization
import pandas as pd
df = pd.DataFrame(embedding_vectors_2d, columns=['x', 'y'])
df['word'] = vocabulary# Visualize the results and beautify with Seaborn
sns.set_theme(style="whitegrid")
plt.figure(figsize=(10, 6))
sns.scatterplot(x='x', y='y', hue='word', data=df, palette='viridis', s=100)
plt.title('Word Embeddings Visualization')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(title='Word')
plt.show()# Printing more detailed output information
print("\nWord Embeddings Visualization has been generated and displayed.\nEach point in the scatter plot represents a word,\nand its position is determined by its embedding vector.")# Output the embedding vectors for each word
for word, vector in zip(vocabulary, embedding_matrix):print(f"Embedding vector for '{word}': {vector}")
输出内容描述
嵌入矩阵打印了嵌入矩阵的数值。
词向量散点图显示了单词在向量空间中的2D分布。
图表标题、x轴标签、y轴标签和图例提供了图表的基本信息和说明。
详细的输出信息(打印到控制台)提供了关于词向量散点图的详细解释和每个单词的嵌入向量。

这篇关于【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1151695

相关文章

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、