pandas数据过滤

2024-09-09 16:28
文章标签 数据 过滤 pandas

本文主要是介绍pandas数据过滤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas 数据过滤方法

Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。

1. 基于条件筛选行

可以使用布尔索引来根据条件过滤行。

import pandas as pd# 创建示例数据
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],'Age': [24, 27, 22, 32, 29],'Score': [85, 90, 78, 88, 92]}
df = pd.DataFrame(data)# 筛选 Age 大于 25 的行
filtered_df = df[df['Age'] > 25]
print(filtered_df)
2. 多条件筛选

可以使用 & (与) 和 | (或) 来结合多个条件进行筛选。

# 筛选 Age 大于 25 且 Score 大于 85 的行
filtered_df = df[(df['Age'] > 25) & (df['Score'] > 85)]
print(filtered_df)
3. 使用 isin() 方法筛选

isin() 方法用于筛选列中包含特定值的行。

# 筛选 Name 为 'Alice' 或 'Bob' 的行
filtered_df = df[df['Name'].isin(['Alice', 'Bob'])]
print(filtered_df)
4. 使用 str.contains() 筛选字符串

str.contains() 可以根据字符串的包含关系进行筛选。

# 筛选 Name 包含字母 'a' 的行
filtered_df = df[df['Name'].str.contains('a', case=False)]
print(filtered_df)
5. 使用 query() 方法筛选

query() 方法允许使用 SQL 风格的语法进行筛选。

# 使用 query 筛选 Age 大于 25 的行
filtered_df = df.query('Age > 25')
print(filtered_df)
6. 筛选缺失值

可以使用 isna()notna() 来筛选包含缺失值或非缺失值的行。

# 添加一行带有缺失值的数据
df.loc[5] = ['Frank', None, 80]# 筛选 Age 为空的行
filtered_df = df[df['Age'].isna()]
print(filtered_df)

练习题目

练习 1: 创建一个包含 Name, Age, Score 的 DataFrame,并筛选出 Age 大于 30 的行。

练习 2: 使用布尔索引筛选出 Name 为 ‘David’ 或 ‘Eva’ 的行。

练习 3: 使用 isin() 方法筛选 Age 为 22, 24 的行。

练习 4: 使用 str.contains() 方法筛选 Name 中包含字母 ‘e’ 的行。

练习 5: 使用 query() 方法筛选出 Score 大于 85 且 Age 小于 30 的行。

习题答案

答案 1:

filtered_df = df[df['Age'] > 30]

答案 2:

filtered_df = df[(df['Name'] == 'David') | (df['Name'] == 'Eva')]

答案 3:

filtered_df = df[df['Age'].isin([22, 24])]

答案 4:

filtered_df = df[df['Name'].str.contains('e', case=False)]

答案 5:

filtered_df = df.query('Score > 85 & Age < 30')

这篇关于pandas数据过滤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1151675

相关文章

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

java敏感词过滤的实现方式

《java敏感词过滤的实现方式》文章描述了如何搭建敏感词过滤系统来防御用户生成内容中的违规、广告或恶意言论,包括引入依赖、定义敏感词类、非敏感词类、替换词类和工具类等步骤,并指出资源文件应放在src/... 目录1.引入依赖2.定义自定义敏感词类3.定义自定义非敏感类4.定义自定义替换词类5.最后定义工具类

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

pandas批量拆分与合并Excel文件的实现示例

《pandas批量拆分与合并Excel文件的实现示例》本文介绍了Pandas中基于整数位置的iloc和基于标签的loc方法进行数据索引和切片的操作,并将大Excel文件拆分合并,具有一定的参考价值,感... 目录一、Pandas 进行索引和切编程片的iloc、loc方法二、Pandas批量拆分与合并Exce

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5