C++——stack、queue的实现及deque的介绍

2024-09-09 08:12
文章标签 c++ 实现 介绍 stack queue deque

本文主要是介绍C++——stack、queue的实现及deque的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.stack与queue的实现

1.1stack的实现

 1.2 queue的实现

2.重温vector、list、stack、queue的介绍

2.1 STL标准库中stack和queue的底层结构

 3.deque的简单介绍

3.1为什么选择deque作为stack和queue的底层默认容器

 3.2 STL中对stack与queue的模拟实现

①stack模拟实现

②queue模拟实现

3.3deque的缺陷


1.stack与queue的实现

1.1stack的实现

在C++入门10——stack与queue的使用中看到:stack的接口函数无非就是这些:

从栈的接口中可以看出,栈实际是一种特殊的vector,因此使用vector完全可以模拟实现stack:

#include<vector>namespace xxk
{template<class T>class stack{public://构造stack(){}//压栈void push(const T& x){_c.push_back(x);}//出栈void pop(){_c.pop_back();}//获取栈顶元素T& top(){return _c.back();}const T& top() const{return _c.back();}//获取有效元素个数size_t size() const{return _c.size();}//检测栈是否为空bool empty() const{return _c.empty();}private:std::vector<T> _c;};
}

 1.2 queue的实现

queue的接口存在这些:

因为queue的接口中存在头删和尾插,因此使用vector来封装效率太低,故可以借助list来模拟实现queue:

#include <list>namespace xxk
{template<class T>class queue{public://构造queue(){}//队尾入队列void push(const T& x){_c.push_back(x);}//队头出队列void pop()const{_c.pop_front();}//获取队尾元素T& back(){return _c.back();}const T& back() const{return _c.back();}//获取队头元素T& front(){return _c.front();}const T& front() const{return _c.front();}//获取有效元素个数size_t size() const{return _c.size();}//判断是否为空bool empty() const{return _c.empty();}private:std::list<T> _c;};
}

2.重温vector、list、stack、queue的介绍

我们在学习vector、list和stack与queue的使用时,对四者分别有这样的介绍:

①Vectors are sequence containers...——Vector是序列容器......;

②Lists are sequence containers...——List是序列容器......;

③Stacks are a type of container adaptor...——Stack是一种容器适配器......;

④queues are a type of container adaptor...——queue是一种容器适配器......;

显然前两者是容器,后两者是容器适配器,这是两种不同的表述。那为什么stack与queue不是容器呢?想要弄明白这个问题,我们就需要从stack与queue的底层结构找答案。

2.1 STL标准库中stack和queue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和queue只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:

关于适配器,我们可以想到平时用的插座的例子:

比如有一个三孔电源,可手机充电时却要用到两孔电源,在没有两孔电源的前提下,我们就可以增加一个电源适配器将三孔电源转换为两孔电源:

 在这里我们就可以简单理解为:三孔电源就是deque容器,电源适配器就是stack和queue容器适配器,手机充电器就是对象:

说到这里,我们就不得不了解一下deque了。

 3.deque的简单介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

(注意:deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,双端队列底层是一段假想的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上)

3.1为什么选择deque作为stack和queue的底层默认容器

在上面我们已经用vector和list分别实现了stack与queue,既然vector和list就能实现,为什么STL中却要用deque这样一个使用频次不如vector和list的容器呢?

这是因为:

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;

queue是先进先出的特殊线性数据结构,只要具有 push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。

但是STL中对stack和 queue默认选择deque作为其底层容器,主要是因为:

1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。

2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。

结合了deque的优点,而完美的避开了其缺陷。

 3.2 STL中对stack与queue的模拟实现

①stack模拟实现

#include<deque>
#include<vector>
#include<list>
namespace xxk
{template<class T, class Con = deque<T>>//template<class T, class Con = vector<T>>//template<class T, class Con = list<T>>class stack{public:stack() {}void push(const T& x) { _c.push_back(x); }void pop() { _c.pop_back(); }T& top() { return _c.back(); }const T& top()const { return _c.back(); }size_t size()const { return _c.size(); }bool empty()const { return _c.empty(); }private:Con _c;};
}

②queue模拟实现

#include<deque>#include <list>
namespace xxk
{template<class T, class Con = deque<T>>//template<class T, class Con = list<T>>class queue{public:queue() {}void push(const T& x) { _c.push_back(x); }void pop() { _c.pop_front(); }T& back() { return _c.back(); }const T& back()const { return _c.back(); }T& front() { return _c.front(); }const T& front()const { return _c.front(); }size_t size()const { return _c.size(); }bool empty()const { return _c.empty(); }private:Con _c;};
}

3.3deque的缺陷

①与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不 需要搬移大量的元素,因此其效率是必vector高的;

②与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段;

③但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

这篇关于C++——stack、queue的实现及deque的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150625

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依