Go Channel的实现

2024-09-08 13:58
文章标签 实现 go channel

本文主要是介绍Go Channel的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

channel作为goroutine间通信和同步的重要途径,是Go runtime层实现CSP并发模型重要的成员。在不理解底层实现时,经常在使用中对channe相关语法的表现感到疑惑,尤其是select case的行为。因此在了解channel的应用前先看一眼channel的实现。

Channel内存布局

channel是go的内置类型,它可以被存储到变量中,可以作为函数的参数或返回值,它在runtime层对应的数据结构式hchan。hchan维护了两个链表,recvq是因读这个chan而阻塞的G,sendq则是因写这个chan而阻塞的G。waitq队列中每个元素的数据结构为sudog,其中elem用于保存数据。

type hchan struct {qcount   uint           // total data in the queuedataqsiz uint           // size of the circular queuebuf      unsafe.Pointer // points to an array of dataqsiz elementselemsize uint16closed   uint32elemtype *_type // element typesendx    uint   // send indexrecvx    uint   // receive indexrecvq    waitq  // list of recv waiterssendq    waitq  // list of send waiterslock     mutex
}type sudog struct {g           *gselectdone  *uint32next        *sudogprev        *sudogelem        unsafe.Pointer // data elementreleasetime int64nrelease    int32  // -1 for acquirewaitlink    *sudog // g.waiting list
}

hchan只是channel的头部,头部后面的一段内存连续的数组将作为channel的缓冲区,即用于存放channel数据的环形队列。qcount datasize分别描述了缓冲区当前使用量和容量。若channel是无缓冲的,则size是0,就没有这个环形队列了。
在这里插入图片描述
创建chan需要知道数据类型和缓冲区大小。对应上面的结构图newarray将生成这个环形队列。之所以要分开指针类型缓冲区主要是为了区分gc操作,需要将它设置为flagNoScan。并且指针大小固定,可以跟hchan头部一起分配内存,不需要先new(hchan)newarry

声明但不make初始化的chan是nil chan。读写nil chan会阻塞,关闭nil chan会panic。

func makechan(t *chantype, size int64) *hchan {elem := t.elemvar c *hchanif elem.kind&kindNoPointers != 0 || size == 0 {c = (*hchan)(mallocgc(hchanSize+uintptr(size)*uintptr(elem.size), nil, flagNoScan))if size > 0 && elem.size != 0 {c.buf = add(unsafe.Pointer(c), hchanSize)} else {c.buf = unsafe.Pointer(c)}} else {c = new(hchan)c.buf = newarray(elem, uintptr(size))}c.elemsize = uint16(elem.size)c.elemtype = elemc.dataqsiz = uint(size)return c
}

Channel操作

从实现中可见读写chan都要lock,这跟读写共享内存一样都有lock的开销。

数据在chan中的传递方向从chansend开始从入参最终写入recvq中的goroutine的数据域,这中间如果发生阻塞可能先写入sendq中goroutine的数据域等待中转。

从gopark返回后sudog对象可重用。

同步读写

写channel c<-x 调用runtime.chansend。读channel <-c 调用runtime.chanrecv。总结同步读写的过程就是:

  • 写chan时优先检查recvq中有没有等待读chan的goroutine,若有从recvq中出队sudoG。syncsend将要写入chan的数据ep复制给刚出队的sudoG的elem域。通过goready唤醒接收者G,状态设置为_Grunnable,之后放进P本地待运行队列。之后这个读取到数据的G可以再次被P调度了。
  • 写chan时如果没有G等待读,当前G因等待写而阻塞。这时创建或获取acquireSudog,封装上要写入的数据进入sendq队列。同时当前Ggopark休眠等待被唤醒。
  • 读chan时优先唤醒sendq中等待写的goroutine,并从中获取数据;若没人写则将自己挂到recvq中等待唤醒。
func chansend(t *chantype, c *hchan, ep unsafe.Pointer, 
block bool, callerpc uintptr) bool {
...lock(&c.lock)if c.dataqsiz == 0 { // synchronous channelsg := c.recvq.dequeue()if sg != nil { // found a waiting receiverunlock(&c.lock)recvg := sg.gsyncsend(c, sg, ep)goready(recvg, 3)return true}// no receiver available: block on this channel.mysg := acquireSudog()mysg.elem = ep  c.sendq.enqueue(mysg)goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)// someone woke us up.releaseSudog(mysg)return true}
}
func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) 
(selected, received bool) {if c.dataqsiz == 0 { // synchronous channelsg := c.sendq.dequeue()if sg != nil {unlock(&c.lock)typedmemmove(c.elemtype, ep, sg.elem)gp.param = unsafe.Pointer(sg)goready(gp, 3)return true, true}// no sender available: block on this channel.mysg := acquireSudog()mysg.elem = epc.recvq.enqueue(mysg)goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3)// someone woke us upreleaseSudog(mysg)return recvclosed(c, ep)}
}

异步读写

异步与同步的区别就是读写时会优先检查缓冲区有没有数据读或有没有空间写。并且真正读写chan后会发生缓冲区变化,这时可能之前阻塞的goroutine有机会写和读了,所以要尝试唤醒它们。 总结过程:

  • 写chan时缓冲区已满,则将当前G和数据封装好放入sendq队列中等待写入,同时挂起gopark当前goroutine。若缓冲区未满,则直接将数据写入缓冲区,并更新缓冲区最新数据的index以及qcount。同时尝试从recvq中唤醒goready一个之前因为缓冲区无数据可读而阻塞的等待读的goroutine。
  • 读chan时首先看缓冲区有没有数据,若有则直接读取,并尝试唤醒一个之前因为缓冲区满而阻塞的等待写的goroutine,让它有机会写数据。若无数据可读则入队recvq。
func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {// asynchronous channelvar t1 int64for futile := byte(0); c.qcount >= c.dataqsiz; futile = traceFutileWakeup {mysg := acquireSudog()c.sendq.enqueue(mysg)goparkunlock(&c.lock, "chan send", traceEvGoBlockSend|futile, 3)// someone woke us up - try againreleaseSudog(mysg)}// write our data into the channel buffertypedmemmove(c.elemtype, chanbuf(c, c.sendx), ep)c.sendx++if c.sendx == c.dataqsiz {c.sendx = 0}c.qcount++// wake up a waiting receiversg := c.recvq.dequeue()if sg != nil {goready(sg.g, 3)} return true
}
func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) 
(selected, received bool) {// asynchronous channelfor futile := byte(0); c.qcount <= 0; futile = traceFutileWakeup {mysg := acquireSudog()c.recvq.enqueue(mysg)goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv|futile, 3)// someone woke us up - try againreleaseSudog(mysg)}typedmemmove(c.elemtype, ep, chanbuf(c, c.recvx))memclr(chanbuf(c, c.recvx), uintptr(c.elemsize))c.recvx++if c.recvx == c.dataqsiz {c.recvx = 0}c.qcount--// ping a sender now that there is spacesg := c.sendq.dequeue()if sg != nil {goready(sg.g, 3)}return true, true
}

关闭

通过goready唤醒recvq中等待读的goroutine,之后唤醒所有sendq中等待写的goroutine。因此close chan相当于解除所有因它阻塞的gouroutine的阻塞。

func closechan(c *hchan) {c.closed = 1// release all readersfor {sg := c.recvq.dequeue()if sg == nil {break}...goready(gp, 3)}// release all writersfor {sg := c.sendq.dequeue()if sg == nil {break}...goready(gp, 3)}
}

写closed chan或关闭 closed chan会导致panic。读closed chan永远不会阻塞,会返回一个通道数据类型的零值,返回给函数的参数ep。

所以通常在close chan时需要通过读操作来判断chan是否关闭。

if v, open := <- c; !open {// chan is closed
}

Happens before

在go memory model 里讲了happens-before问题很有意思。其中有一些跟chan相关的同步规则可以解释一些一直以来的疑问,记录如下:

  • 对带缓冲chan的写操作 happens-before相应chan的读操作
  • 关闭chan happens-before 从该chan读最后的返回值0
  • 不带缓冲的chan的读操作 happens-before相应chan的写操作
var c = make(chan int, 10)
var a string
func f() {a = "hello, world"  //(1)c <- 0  // (2)
}func main() {go f()<- c  //(3)print(a)  //(4)
}

(1) happens-before(2) (3) happens-before(4),再根据规则可知(2) happens(3)。因此(1)happens-before(4),这段代码没有问题,肯定会输出hello world。

var c = make(chan int)
var a string
func f() {a = "hello, world"  //(1)<-c  // (2)
}func main() {go f()c <- 0  //(3)print(a)  //(4)
}

同样根据规则三可知(2)happens-before(3) 最终可以保证(1) happens-before(4)。若c改成待缓冲的chan,则结果将不再有任何同步保证使得(2) happens-before(3)。

原文地址:Go Channel的实现

这篇关于Go Channel的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148305

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1