C++编程:ZeroMQ进程间(订阅-发布)通信配置优化

2024-09-08 09:52

本文主要是介绍C++编程:ZeroMQ进程间(订阅-发布)通信配置优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 0. 概述
    • 1. 发布者同步发送(pub)与订阅者异步接收(sub)
      • 示例代码
      • 可能的副作用:
    • 2. 适度增加缓存和队列
      • 示例代码
      • 副作用:
    • 3. 动态的IPC通道管理
      • 示例代码
      • 副作用:
    • 4. 接收消息的超时设置
      • 示例代码
      • 副作用:
    • 5. 增加I/O线程数量
      • 示例代码
      • 副作用:
    • 6. 异步消息发送(使用`dontwait`标志)
      • 示例代码
      • 副作用:
    • 7. 其他可以考虑的优化项
      • 7.1 立即发送(ZMQ_IMMEDIATE)
        • 示例代码
        • 副作用:
      • 7.2 消息压缩(ZMQ_CONFLATE)
        • 示例代码
        • 副作用:

0. 概述

ZeroMQ是适用于高性能的进程间通信(IPC)的中间件。本文将详细介绍几种优化ZeroMQ订阅-发布通信的方法,并通过代码示例展示如何在实际项目中应用。

1. 发布者同步发送(pub)与订阅者异步接收(sub)

使用发布者同步发送消息和订阅者异步接收消息是一种常见的高效通信模式。发布者同步发送确保消息可靠传输,而订阅者异步接收则提高了系统的处理效率,适合高吞吐量、实时性要求高的系统。

示例代码

同步发送:

zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");// 同步发送消息,确保消息已成功加入队列
zmq::message_t message(data, data_size);
publisher.send(message, zmq::send_flags::none);

异步接收:

zmq::socket_t subscriber(context, ZMQ_SUB);
subscriber.connect("ipc:///tmp/pub");
subscriber.setsockopt(ZMQ_SUBSCRIBE, "", 0);// 非阻塞接收
zmq::message_t message;
if (!subscriber.recv(message, zmq::recv_flags::dontwait)) {// 接收失败后,记录日志并进行阻塞重试std::cerr << "异步接收失败,进行阻塞重试..." << std::endl;if (subscriber.recv(message)) {std::cout << "阻塞重试成功接收到消息。" << std::endl;}
}

可能的副作用:

暂时没想到

2. 适度增加缓存和队列

调整发送和接收的高水位标记,可以减少在高负载下的消息丢失情况。

示例代码

zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");int sndhwm = 10000; // 发送高水位标记
int rcvhwm = 10000; // 接收高水位标记
publisher.setsockopt(ZMQ_SNDHWM, &sndhwm, sizeof(sndhwm));
publisher.setsockopt(ZMQ_RCVHWM, &rcvhwm, sizeof(rcvhwm));

副作用:

  • 增加水位标记将占用更多内存。

3. 动态的IPC通道管理

为每个Topic动态创建独立的IPC通道,可以提高消息的隔离性,减少不同Topic间的相互干扰。

示例代码

zmq::context_t context(1);
std::vector<zmq::socket_t> publishers;for (int i = 0; i < num_topics; ++i) {zmq::socket_t pub(context, ZMQ_PUB);std::string ipc_address = "ipc:///tmp/topic" + std::to_string(i) + "_ipc";pub.bind(ipc_address);publishers.push_back(std::move(pub));
}

副作用:

  • 管理多个IPC通道会增加系统复杂性,每个IPC通道会消耗操作系统资源。

4. 接收消息的超时设置

设置消息接收的超时时间可以避免订阅者长时间阻塞在消息接收上,从而提高系统的整体响应性。

示例代码

zmq::socket_t subscriber(context, ZMQ_SUB);
subscriber.connect("ipc:///tmp/pub");
subscriber.setsockopt(ZMQ_SUBSCRIBE, "", 0);  // 订阅所有消息int timeout = 5000; // 5秒超时
subscriber.setsockopt(ZMQ_RCVTIMEO, &timeout, sizeof(timeout));zmq::message_t message;
if (!subscriber.recv(message)) {std::cerr << "接收超时,未接收到消息。" << std::endl;
}

副作用:

  • 超时设置过短时可能会丢失消息,尤其是在网络延迟较大的情况下。

5. 增加I/O线程数量

通过增加I/O线程,可以提高系统的并发处理能力,适用于多核CPU的场景。

示例代码

zmq::context_t context(4); // 使用4个I/O线程
zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");

副作用:

  • 增加线程数量会占用更多的CPU资源,尤其在资源有限的环境中。

6. 异步消息发送(使用dontwait标志)

通过异步消息发送,发布者可以在消息队列满时不被阻塞,这适用于高频率发送的场景。

示例代码

zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");zmq::message_t message(data, data_size);
bool sent = publisher.send(message, zmq::send_flags::dontwait);
if (!sent) {std::cerr << "异步发送失败。" << std::endl;
}

副作用:

  • 如果队列满了,消息将无法发送并可能丢失,这可能导致关键数据的丢失。可以考虑“适度增加缓存和队列”。

7. 其他可以考虑的优化项

7.1 立即发送(ZMQ_IMMEDIATE)

立即发送确保在接收方连接还未完全建立时,消息能够立刻传输。适用于需要极快响应的场景。

示例代码
zmq::socket_t publisher(context, ZMQ_PUB);
publisher.setsockopt(ZMQ_IMMEDIATE, 1);
publisher.bind("ipc:///tmp/pub");zmq::message_t message(data, data_size);
publisher.send(message, zmq::send_flags::none);
副作用:
  • 如果接收方连接不稳定,消息可能被丢弃。

7.2 消息压缩(ZMQ_CONFLATE)

只保留最新的消息,适用于仅关心最新状态更新的场景。

示例代码
zmq::socket_t subscriber(context, ZMQ_SUB);
subscriber.connect("ipc:///tmp/pub");
subscriber.setsockopt(ZMQ_SUBSCRIBE, "", 0);
subscriber.setsockopt(ZMQ_CONFLATE, 1);zmq::message_t message;
while (subscriber.recv(message)) {// 处理最新的消息
}
副作用:
  • 旧消息将被丢弃,适用于只关心最新状态的应用,不适合高可靠性的系统。

这篇关于C++编程:ZeroMQ进程间(订阅-发布)通信配置优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147787

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

mysql8.0.43使用InnoDB Cluster配置主从复制

《mysql8.0.43使用InnoDBCluster配置主从复制》本文主要介绍了mysql8.0.43使用InnoDBCluster配置主从复制,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录1、配置Hosts解析(所有服务器都要执行)2、安装mysql shell(所有服务器都要执行)3、

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别