标准库标头 <filesystem> (C++17)学习

2024-09-07 20:52

本文主要是介绍标准库标头 <filesystem> (C++17)学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

此头文件是文件系统支持库的一部分。本篇介绍filesystem命名空间的一些函数。

函数

在命名空间 std::filesystem 定义

absolute

(C++17)

组成一个绝对路径
(函数)

canonicalweakly_canonical

(C++17)

组成一个规范路径
(函数)

relativeproximate

(C++17)

组成一个相对路径
(函数)

copy

(C++17)

复制文件或目录
(函数)

copy_file

(C++17)

复制文件内容
(函数)

copy_symlink

(C++17)

复制一个符号链接
(函数)

create_directorycreate_directories

(C++17)(C++17)

创建新目录
(函数)

create_hard_link

(C++17)

创建一个硬链接
(函数)

create_symlinkcreate_directory_symlink

(C++17)(C++17)

创建一个符号链接
(函数)

current_path

(C++17)

返回或设置当前工作目录
(函数)

exists

(C++17)

检查路径是否指代既存的文件系统对象
(函数)

equivalent

(C++17)

检查两个路径是否指代同一文件系统对象
(函数)

file_size

(C++17)

返回文件的大小
(函数)

hard_link_count

(C++17)

返回指代特定文件的硬链接数
(函数)

last_write_time

(C++17)

获取或设置最近一次数据修改的时间
(函数)

permissions

(C++17)

修改文件访问权限
(函数)

read_symlink

(C++17)

获得符号链接的目标
(函数)

removeremove_all

(C++17)(C++17)

移除一个文件或空目录
移除一个文件或递归地移除一个目录及其所有内容
(函数)

rename

(C++17)

移动或重命名一个文件或目录
(函数)

resize_file

(C++17)

以截断或填充零更改一个常规文件的大小
(函数)

space

(C++17)

确定文件系统上的可用空闲空间
(函数)

statussymlink_status

(C++17)(C++17)

确定文件属性
确定文件属性,检查符号链接目标
(函数)

temp_directory_path

(C++17)

返回一个适用于临时文件的目录
(函数)

 示例代码:

#include <filesystem>
#include <iostream>
#include <string>
#include <cstdlib>
#include <fstream>
#include <cstdint>
#include <system_error>namespace fs = std::filesystem;void show(std::filesystem::path x, std::filesystem::path y)
{std::cout << "x:\t\t " << x << "\ny:\t\t " << y << '\n'<< "relative(x, y):  "<< std::filesystem::relative(x, y) << '\n'<< "proximate(x, y): "<< std::filesystem::proximate(x, y) << "\n\n";
}void demo_exists(const fs::path& p, fs::file_status s = fs::file_status{})
{std::cout << p;if (fs::status_known(s) ? fs::exists(s) : fs::exists(p))std::cout << " exists\n";elsestd::cout << " does not exist\n";
}struct HumanReadable
{std::uintmax_t size{};private:friend std::ostream& operator<<(std::ostream& os, HumanReadable hr){int o{};double mantissa = hr.size;for (; mantissa >= 1024.; mantissa /= 1024., ++o);os << std::ceil(mantissa * 10.) / 10. << "BKMGTPE"[o];return o ? os << "B (" << hr.size << ')' : os;}
};int main(int, char const* argv[])
{//path current_path example  返回或设置当前工作目录 std::cout << "当前路径为 " << fs::current_path() << '\n';//path temp_directory_path example 返回一个适用于临时文件的目录 std::cout << "temp_directory_path " << fs::temp_directory_path() << '\n';//absolute example  当前路径/foo.c  组成一个绝对路径 std::filesystem::path p = "foo.c";std::cout << p << " 的绝对路径为 " << fs::absolute(p) << '\n';// create_directory/create_directories example 创建新目录 auto temp = fs::current_path();auto dir1 = temp / "abc";auto dir2 = temp / "abb/c2/e";std::filesystem::create_directory(dir1); //只能创建单个目录std::filesystem::create_directories(dir2);//可以创建多级目录std::filesystem::current_path(dir2);//设置当前路径// canonical/weakly_canonical  example 组成一个规范路径//"D:\\vscpp\\cpp20\\cpp20standard\\filesystem"auto p1 = std::filesystem::path("../../c2/./e");auto p2 = std::filesystem::path("../no-such-file");std::cout << "当前路径为 "<< std::filesystem::current_path() << '\n'<< p1 << " 的规范路径为 "<< std::filesystem::canonical(p1) << '\n'<< p2 << " 的弱规范路径为 "<< std::filesystem::weakly_canonical(p2) << '\n';try{[[maybe_unused]] auto x_x = std::filesystem::canonical(p2);// 不会抵达此处}catch (const std::exception& ex){std::cout << p2 << " 的规范路径抛出了异常:\n"<< ex.what() << '\n';}//relative / proximate 组成一个相对路径 show("/a/b/c", "/a/b");show("/a/c", "/a/b");show("c", "/a/b");show("/a/b", "c");//auto temp = fs::current_path();auto dir3 = temp / "abb\\c2";auto dir4 = temp / "abb\\dir4";auto file1 = temp / "abb\\file1.txt";auto file2 = temp / "abb\\file2.txt";std::cout << "dir3======================" << dir3 << "\n";std::ofstream(file1).put('a');fs::copy(file1, file2); // 复制文件fs::copy(dir3, dir4); // 复制目录(非递归)const auto copyOptions = fs::copy_options::update_existing| fs::copy_options::recursive| fs::copy_options::directories_only;auto dirAbc = temp / "abc";auto dir5 = temp / "abb_copy";fs::copy(dirAbc, dir5, copyOptions);static_cast<void>(std::system("tree"));// remove/remove_all 移除一个文件或空目录 / 移除一个文件或递归地移除一个目录及其所有内容fs::remove(file1);fs::remove(file2);fs::remove_all(dirAbc);fs::remove_all(dir5);//exists example 检查路径是否指代既存的文件系统对象 const fs::path sandbox{ temp/"sandbox" };fs::create_directory(sandbox);std::ofstream{ sandbox / "file" }; // 创建常规文件//fs::create_symlink("non-existing", sandbox / "symlink");demo_exists(sandbox);for (const auto& entry : fs::directory_iterator(sandbox))demo_exists(entry, entry.status()); // 使用来自 directory_entry 的缓存状态fs::remove_all(sandbox);// 硬链接等价  equivalent example 检查两个路径是否指代同一文件系统对象 fs::path path1 = ".";fs::path path2 = fs::current_path();if (fs::equivalent(path1, path2))std::cout << path1 << " is equivalent to " << path2 << '\n';// 符号链接等价 for (const fs::path lib : {"/lib/libc.so.6", "/lib/x86_64-linux-gnu/libc.so.6"}){try{path2 = lib.parent_path() / fs::read_symlink(lib);}catch (std::filesystem::filesystem_error const& ex){std::cout << ex.what() << '\n';continue;}if (fs::equivalent(lib, path2))std::cout << lib << " is equivalent to " << path2 << '\n';}//file_size example 返回文件的大小 fs::path example = "bug.nc";fs::path path3 = fs::current_path() / example;std::ofstream(path3).put('a'); // 创建大小为 1 的文件std::cout << example << " size = " << fs::file_size(path3) << '\n';fs::remove(path3);path3 = argv[0];std::cout << path3 << " size = " << HumanReadable{ fs::file_size(path3) } << '\n';try{std::cout << "尝试获取目录的大小:\n";[[maybe_unused]] auto x_x = fs::file_size("/dev");}catch (fs::filesystem_error& e){std::cout << e.what() << '\n';}for (std::error_code ec; fs::path bin : {"cat", "mouse"}){bin = "/bin" / bin;if (const std::uintmax_t size = fs::file_size(bin, ec); ec)std::cout << bin << " : " << ec.message() << '\n';elsestd::cout << bin << " size = " << HumanReadable{ size } << '\n';}//rename example 移动或重命名一个文件或目录 std::filesystem::path path4 = std::filesystem::current_path() / "sandbox";std::filesystem::create_directories(path4 / "from");std::ofstream{ path4 / "from/file1.txt" }.put('a');std::filesystem::create_directory(path4 / "to");fs::rename(path4 / "from/file1.txt", path4 / "to/file2.txt"); // OK
//	fs::rename(path4 / "from", path4 / "to/subdir"); // OK//space example确定文件系统上的可用空闲空间std::error_code ec;const std::filesystem::space_info si = std::filesystem::space(path4, ec);std::cout << "capacity: " << si.capacity << "\tavailable:" << si.available << "\tfree:" << si.free << '\n';//std::filesystem::remove_all(path4);std::cout << "hello world\n";return 0;
}

运行结果:

参考:

标准库标头 <filesystem> (C++17) - cppreference.com

这篇关于标准库标头 <filesystem> (C++17)学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146134

相关文章

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C