基于SA模拟退火算法的多车辆TSP问题求解matlab仿真

2024-09-07 20:20

本文主要是介绍基于SA模拟退火算法的多车辆TSP问题求解matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       基于SA模拟退火算法的多车辆TSP问题求解matlab仿真,三个车辆分别搜索其对应的最短路径,仿真后得到路线规划图和SA收敛曲线。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

(完整程序运行后无水印)

3.核心程序

.......................................................................
while(T > Ts)% 对于每次迭代for k = 1:Miter% 随机选择邻域操作模式mode      = randi([1 3]);% 生成新路径XLine_new = func_Neibor(Xline,Para,mode);% 计算新路径的成本Jnew      = func_fitness(XLine_new,Para);% 计算成本差值delta     = Jnew - JJ;% 如果新路径的成本更低if(delta < 0)JJ    = Jnew;Xline = XLine_new;else% 计算接受概率p=exp(-delta/T);% 随机数小于接受概率则接受新路径if rand() <= p JJ = Jnew;Xline = XLine_new;endendend% 记录当前成本Jsave(cnt) = JJ;% 如果当前成本低于最低成本if JJ<JminJmin  = JJ;XLmin = Xline;end% 更新温度T   = T*deacy; % 退火cnt = cnt+1;% 绘图figure(2);if mod(cnt,50)==1func_show(XLmin,Para);enddrawnow
end% 新建一个图形窗口
figure;
plot(Jsave);
xlabel('迭代次数');
ylabel('SA适应度值收敛');
grid on
0079

4.本算法原理

       基于模拟退火算法(Simulated Annealing, SA)求解多车辆旅行商问题(Vehicle Routing Problem with Multiple Traveling Salesmen, VRPMTS)是一个复杂而有趣的问题。在这个问题中,我们需要为一组车辆规划一条路径,使得每辆车从起点出发,访问一系列城市后返回起点,同时使得总的旅行成本(通常是总距离)最小化。模拟退火算法因其全局寻优能力和避免陷入局部最优解的能力而成为求解此类问题的有效工具。

       多车辆旅行商问题(VRPMTS)是指给定一组城市和一组车辆,要求为每辆车规划一条路径,使得每辆车从起点出发,访问所有城市恰好一次,并最终回到起点,同时使总的旅行成本最小化。

       模拟退火算法通过一个温度参数T 控制搜索过程。在初始阶段,T 设定得很高,允许算法接受劣质解(即成本增加的解)。随着算法运行,T 逐渐降低,最终趋向于零。这样,算法能够跳出局部最优解,探索更广阔的解空间,最终收敛到全局最优解或接近最优解。

       算法步骤如下:

       模拟退火算法因其全局寻优能力和避免陷入局部最优解的能力而成为求解多车辆旅行商问题的有效工具。通过合理设定初始温度、温度衰减率以及停止温度,结合适当的邻居解生成方法和成本计算方法,模拟退火算法能够有效地找到接近最优解的解决方案。

5.完整程序

VVV

这篇关于基于SA模拟退火算法的多车辆TSP问题求解matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146062

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.