CF #278 (Div. 2) B.(暴力枚举+推导公式+数学构造)

2024-09-07 19:58

本文主要是介绍CF #278 (Div. 2) B.(暴力枚举+推导公式+数学构造),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B. Candy Boxes
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
题目链接: http://codeforces.com/contest/488/problem/B

There is an old tradition of keeping 4 boxes of candies in the house in Cyberland. The numbers of candies are special if their arithmetic mean, their median and their range are all equal. By definition, for a set {x1, x2, x3, x4} (x1 ≤ x2 ≤ x3 ≤ x4arithmetic mean is median is  and range is x4 - x1The arithmetic mean and median are not necessary integer. It is well-known that if those three numbers are same, boxes will create a "debugging field" and codes in the field will have no bugs.

For example, 1, 1, 3, 3 is the example of 4 numbers meeting the condition because their mean, median and range are all equal to 2.

Jeff has 4 special boxes of candies. However, something bad has happened! Some of the boxes could have been lost and now there are only n (0 ≤ n ≤ 4) boxes remaining. The i-th remaining box contains ai candies.

Now Jeff wants to know: is there a possible way to find the number of candies of the 4 - n missing boxes, meeting the condition above (the mean, median and range are equal)?

Input

The first line of input contains an only integer n (0 ≤ n ≤ 4).

The next n lines contain integers ai, denoting the number of candies in the i-th box (1 ≤ ai ≤ 500).

Output

In the first output line, print "YES" if a solution exists, or print "NO" if there is no solution.

If a solution exists, you should output 4 - n more lines, each line containing an integer b, denoting the number of candies in a missing box.

All your numbers b must satisfy inequality 1 ≤ b ≤ 106. It is guaranteed that if there exists a positive integer solution, you can always find such b's meeting the condition. If there are multiple answers, you are allowed to print any of them.

Given numbers ai may follow in any order in the input, not necessary in non-decreasing.

ai may have stood at any positions in the original set, not necessary on lowest n first positions.

Sample test(s)
input
2
1
1
output
YES
3
3
input
3
1
1
1
output
NO
input
4
1
2
2
3
output
YES
Note

For the first sample, the numbers of candies in 4 boxes can be 1, 1, 3, 3. The arithmetic mean, the median and the range of them are all2.

For the second sample, it's impossible to find the missing number of candies.

In the third example no box has been lost and numbers satisfy the condition.

You may output b in any order.



解题思路:

题目大意就是要构造四个数,要求这四个数的 平均数 == 中位数 == 极差。给你n个数,问你能否构造出这样的序列。

首先推导公式: (a + b + c + d) / 4 == (b + c) / 2 == d - a       ------------->>>>>>       d : a = 3 : 1 && a + d == b + c  -------->>>>>>>>  序列应该满足(x , y , 4 * x - y , 3 * x )。

由于题目给出a[ i ] 在[ 1 , 500 ]之间,所以对于x 在[ 1 , 500 ]内暴力枚举,相应的y在[ x , 3 * x ]内枚举,每次得出相应符合条件的四个数。然后判断给出的n个数是否和当前满足条件的数组进行匹配,如果发现匹配数正好等于n的话,说明可以构造出满足条件的序列。



完整代码:

#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <climits>
#include <cassert>
#include <complex>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")typedef long long LL;
typedef double DB;
typedef unsigned uint;
typedef unsigned long long uLL;/** Constant List .. **/ //{const int MOD = int(1e9)+7;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
const DB EPS = 1e-9;
const DB OO = 1e20;
const DB PI = acos(-1.0); //M_PI;
const int maxn = 10001;int a[maxn];
int res[maxn];
int c[5];
int vis[5];
int main()
{#ifdef DoubleQfreopen("in.txt","r",stdin);#endifint n;while(~scanf("%d",&n)){for(int i = 1; i <= n ; i ++)scanf("%d",&a[i]);int flag = 0;int s;for(int x = 1; x <= 500 ; x ++){for(int y = x ; y <= 3 * x ; y ++){c[1] = x;c[2] = y;c[3] = 4 * x - y;c[4] = 3 * x;int cnt = 0;memset(vis , 0 ,sizeof(vis));for(int i = 1 ; i <= n ; i ++){for(int j = 1 ; j <= 4 ; j ++){if(a[i] == c[j] && !vis[j]){vis[j] = 1;cnt ++;break;}}}if(cnt == n){s = 0;for(int i = 1 ; i <= 4 ; i ++){if(!vis[i]){res[s++] = c[i];}}flag = 1;break;}}if(flag)break;}if(flag){sort(res , res + s);printf("YES\n");for(int i = 0 ; i <  s ; i ++){printf("%d\n", res[i]);}}else{printf("NO\n");}}
}


这篇关于CF #278 (Div. 2) B.(暴力枚举+推导公式+数学构造)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146014

相关文章

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Kotlin 枚举类使用举例

《Kotlin枚举类使用举例》枚举类(EnumClasses)是Kotlin中用于定义固定集合值的特殊类,它表示一组命名的常量,每个枚举常量都是该类的单例实例,接下来通过本文给大家介绍Kotl... 目录一、编程枚举类核心概念二、基础语法与特性1. 基本定义2. 带参数的枚举3. 实现接口4. 内置属性三、

C#之枚举类型与随机数详解

《C#之枚举类型与随机数详解》文章讲解了枚举类型的定义与使用方法,包括在main外部声明枚举,用于表示游戏状态和周几状态,枚举值默认从0开始递增,也可手动设置初始值以生成随机数... 目录枚举类型1.定义枚举类型(main外)2.使用生成随机数总结枚举类型1.定义枚举类型(main外)enum 类型名字

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

利用Python实现添加或读取Excel公式

《利用Python实现添加或读取Excel公式》Excel公式是数据处理的核心工具,从简单的加减运算到复杂的逻辑判断,掌握基础语法是高效工作的起点,下面我们就来看看如何使用Python进行Excel公... 目录python Excel 库安装Python 在 Excel 中添加公式/函数Python 读取