多线程篇(并发相关类- 原子操作类)(持续更新迭代)

2024-09-07 15:28

本文主要是介绍多线程篇(并发相关类- 原子操作类)(持续更新迭代),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、原子变量操作类(AtomicLong为例)

1. 前言

2. 实例

二、JDK 8新增的原子操作类LongAdder

三、LongAccumulator类原理探究


前言

JUC包提供了一系列的原子性操作类,这些类都是使用非阻塞算法CAS实现的,相比使用锁实现原子性操作这在性能上有很大提高。

由于原子性操作类的原理都大致相同,这里讲解最简单的AtomicLong类的实现原理以及JDK 8中新增的LongAdder和LongAccumulator

类的原理。有了这些基础,再去理解其他原子性操作类的实现就不会感到困难了。

一、原子变量操作类(AtomicLong为例)

1. 前言

JUC 并发包中包含有 AtomicInteger、AtomicLong 和 AtomicBoolean 等原子性操作类它们的原理类似,我们主要讲解 AtomicLong

类。

AtomicLong 是原子性递增或者递减类,其内部使用 Unsafe 来实现。

通过Unsafe.getUnsafe()方法获取到 Unsafe 类的实例,这里你可能会有疑问,为何能通过 Unsafe.getUnsafe()方法获取到 Unsafe 类的

实例?

其实这是因为 AtomicLong类也是在 rt.jar 包下面的,AtomicLong 类就是通过 BootStarp 类加载器进行加载的。

在没有原子类的情况下,实现计数器需要使用一定的同步措施,比如使用 synchronized 关键字等,但是这些都是阻塞算法,对性能有

一定损耗,而原子操作类都使用 CAS 非阻塞算法,性能更好。

但是在高并发情况下AtomicLong 还会存在性能问题。

JDK 8 提供了一个在高并发下性能更好的 LongAdder 类。

2. 实例

AtomicLong是原子性递增或者递减类,其内部使用Unsafe来实现,我们看下面的代码:

  • 代码(1)通过Unsafe.getUnsafe()方法获取到Unsafe类的实例,这里你可能会有疑问,为何能通过Unsafe.getUnsafe()方法获取到Unsafe类的实例?其实这是因为AtomicLong类也是在rt.jar包下面的,AtomicLong类就是通过BootStarp类加载器进行加载的。
  • 代码(5)中的value被声明为volatile的,这是为了在多线程下保证内存可见性,value是具体存放计数的变量。
  • 代码(2)(4)获取value变量在AtomicLong类中的偏移量。

下面重点看下AtomicLong中的主要函数:

递增和递减操作代码:

在如上代码内部都是通过调用Unsafe的getAndAddLong方法来实现操作,这个函数是个原子性操作,这里第一个参数是AtomicLong实

例的引用,第二个参数是value变量在AtomicLong中的偏移值,第三个参数是要设置的第二个变量的值。

boolean compareAndSet(long expect, long update)方法:

在内部调用了unsafe.compareAndSwapLong方法。

如果原子变量中的value值等于expect,则使用update值更新该值并返回true,否则返回false。

示例代码:多线程使用AtomicLong统计0的个数。

public class Atomic {// (10) 创建Long型原子计数器private static final AtomicLong atomicLong = new AtomicLong();// (11) 创建数据源private static final Integer[] arrayOne = new Integer[]{0, 1, 2, 3, 0, 5, 6, 0, 56, 0};private static final Integer[] arrayTwo = new Integer[]{10, 1, 2, 3, 0, 5, 6, 0, 56, 0};public static void main(String[] args) throws InterruptedException {//(12)线程one统计数组arrayOne中0的个数Thread threadOne = new Thread(() -> {int size = arrayOne.length;for (Integer integer : arrayOne) {if (integer == 0) {atomicLong.incrementAndGet();}}});//(13)线程two统计数组arrayTwo中0的个数Thread threadTwo = new Thread(() -> {int size = arrayTwo.length;for (Integer integer : arrayTwo) {if (integer == 0) {atomicLong.incrementAndGet();}}});// (14) 启动子线程threadOne.start();threadTwo.start();// (15) 等待线程执行完毕threadOne.join();threadTwo.join();System.out.println("arrayOne & arrayTwo 0 的个数是: " + atomicLong.get());}
}

运行结果:

如上代码中的两个线程各自统计自己所持数据中0的个数,每当找到一个0就会调用AtomicLong的原子性递增方法。

在没有原子类的情况下,实现计数器需要使用一定的同步措施,比如使用synchronized关键字等,但是这些都是阻塞算法,对性能有一定

损耗,而本章介绍的这些原子操作类都使用CAS非阻塞算法,性能更好。

但是在高并发情况下AtomicLong还会存在性能问题。

JDK 8提供了一个在高并发下性能更好的LongAdder类,下面我们来讲解这个类。

二、JDK 8新增的原子操作类LongAdder

AtomicLong通过CAS提供了非阻塞的原子性操作,相比使用阻塞算法的同步器来说它的性能已经很好了,但是JDK开发组并不满足于此。

使用AtomicLong时,在高并发下大量线程会同时去竞争更新同一个原子变量,但是由于同时只有一个线程的CAS操作会成功,这就造成

了大量线程竞争失败后,会通过无限循环不断进行自旋尝试CAS的操作,而这会白白浪费CPU资源。

因此JDK 8新增了一个原子性递增或者递减类LongAdder用来克服在高并发下使用AtomicLong的缺点。既然AtomicLong的性能瓶颈是由

于过多线程同时去竞争一个变量的更新而产生的,那么如果把一个变量分解为多个变量,让同样多的线程去竞争多个资源,是不是就解决

了性能问题?是的,LongAdder就是这个思路。下面通过图来理解两者设计的不同之处,如图所示。

使用LongAdder时,则是在内部维护多个Cell变量,每个Cell里面有一个初始值为0的long型变量,这样,在同等并发量的情况下,争夺单

个变量更新操作的线程量会减少,这变相地减少了争夺共享资源的并发量。另外,多个线程在争夺同一个Cell原子变量时如果失败了,它

并不是在当前Cell变量上一直自旋CAS重试,而是尝试在其他Cell的变量上进行CAS尝试,这个改变增加了当前线程重试CAS成功的可能

性。最后,在获取LongAdder当前值时,是把所有Cell变量的value值累加后再加上base返回的。

该类通过内部cells数组分担了高并发下多线程同时对一个原子变量进行更新时的竞争量,让多个线程可以同时对cells数组里面的元素进行

并行的更新操作。

另外,数组元素Cell使用@sun.misc.Contended注解进行修饰,这避免了cells数组内多个原子变量被放入同一个缓存行,也就是避免了

伪共享,这对性能也是一个提升。

三、LongAccumulator类原理探究

LongAdder类是LongAccumulator的一个特例,LongAccumulator比LongAdder的功能更强大。

例如下面的构造函数,其中accumulatorFunction是一个双目运算器接口,其根据输入的两个参数返回一个计算值,

identity则是LongAccumulator累加器的初始值。

上面提到,LongAdder其实是LongAccumulator的一个特例,调用LongAdder就相当于使用下面的方式调用LongAccumulator:

LongAccumulator相比于LongAdder,可以为累加器提供非0的初始值,后者只能提供默认的0值。另外,前者还可以指定累加规则,

比如不进行累加而进行相乘,只需要在构造LongAccumulator时传入自定义的双目运算器即可,后者则内置累加的规则。

这篇关于多线程篇(并发相关类- 原子操作类)(持续更新迭代)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145434

相关文章

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce