KDD 2024 时空数据(Spatio-temporal) ADS论文总结

2024-09-07 14:36

本文主要是介绍KDD 2024 时空数据(Spatio-temporal) ADS论文总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024 KDD( ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 知识发现和数据挖掘会议)在2024年8月25日-29日在西班牙巴塞罗那举行。

本文总结了KDD2024有关时空数据(Spatial-temporal) 的相关论文,如有疏漏,欢迎大家补充。

时空数据Topic:时空(交通)预测, 生成,拥堵预测,定价预测,气象预测,轨迹生成,预测,异常检测,信控优化等

ADS track中有2个session中与时空数据(城市计算)紧密相关:Spatiotemporal Applications 与 Urban Mobility,还有一些其余session中有一些做的时空数据任务。

KDD 2024 时空数据(Spatial-temporal) ADS论文总结
Spatiotemporal Applications

  1. Transportation Marketplace Rate Forecast Using Signature Transform
  2. MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge
  3. Diffusion Model-based Mobile Traffic Generation with Open Data for Network Planning and Optimization
  4. LaDe: The First Comprehensive Last-mile Express Dataset from Industry
  5. UrbanGPT: Spatio-Temporal Large Language Models
  6. Spatio-Temporal Consistency Enhanced Differential Network for Interpretable Indoor Temperature Prediction
  7. Weather Knows What Will Occur: Urban Public Nuisance Events Prediction and Control with Meteorological Assistance

Urban Mobility

  1. Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction
  2. TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera Records
  3. DuMapNet: An End-to-End Vectorization System for City-Scale Lane-Level Map Generation
  4. An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
  5. FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction
  6. PEMBOT: Pareto-Ensembled Multi-task Boosted Trees

其他

  1. FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

Spatiotemporal Applications

1. Transportation Marketplace Rate Forecast Using Signature Transform

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671637

链接https://arxiv.org/abs/2401.04857

作者:Haotian Gu (University of California, Berkeley); Xin Guo (Worldwide Operations Research Science, Amazon.com Inc., University of California, Berkeley); Timothy L. Jacobs (Worldwide Operations Research Science, Amazon.com Inc.); Philip Kaminsky (Worldwide Operations Research Science, Amazon.com Inc., University of California, Berkeley); Xinyu Li (University of California, Berkeley)

关键词:运价预测

2. MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671533

链接https://arxiv.org/abs/2407.01005

作者:Yuning Chen (University of California, Merced); Kang Yang (University of California, Merced); Zhiyu An (University of California, Merced); Brady Holder (University of California, Agriculture and Natural Resources); Luke Paloutzian (University of California, Agriculture and Natural Resources); Khaled M. Bali (University of California, Agriculture and Natural Resources); Wan Du (University of California, Merced)

关键词:时序预测,因果学习,模型预测控制

MARLP

3. Diffusion Model-based Mobile Traffic Generation with Open Data for Network Planning and Optimization

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671544

作者:Haoye Chai (Department of Electronic Engineering, BNRist, Tsinghua University); Tao Jiang (Research Center of 6G Mobile Communications, School of Cyber Science and Engineering, Huazhong University of Science and Technology); Li Yu (Chinamobile Research Institute)

关键词:交通数据生成,扩散模型,卫星图像

OpenDiff

4. LaDe: The First Comprehensive Last-mile Express Dataset from Industry

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671548

链接https://arxiv.org/abs/2306.10675

代码https://github.com/wenhaomin/LaDe

作者:Lixia Wu (Cainiao Network); Haomin Wen (School of Computer and Information Technology, Beijing Jiaotong University, Cainiao Network); Haoyuan Hu (Cainiao Network); Xiaowei Mao (School of Computer and Information Technology, Beijing Jiaotong University, Cainiao Network); Yutong Xia (National University of Singapore); Ergang Shan (Cainiao Network); Jianbin Zheng (Artificial Intelligence Department, Cainiao Network); Junhong Lou (Cainiao Network); Yuxuan Liang (Hong Kong University of Science and Technology (Guangzhou)); Liuqing Yang (Hong Kong University of Science and Technology (Guangzhou)); Roger Zimmermann (National University of Singapore); Youfang Lin (School of Computer and Information Technology, Beijing Jiaotong Univercity); Huaiyu Wan (School of Computer and Information Technology, Beijing Jiaotong University)

关键词:物流数据集,最后一公里配送

LaDe

5. UrbanGPT: Spatio-Temporal Large Language Models

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671578

链接https://arxiv.org/abs/2403.00813

代码https://github.com/HKUDS/UrbanGPT

作者:Zhonghang Li (South China University of Technology, The University of Hong Kong); Lianghao Xia (The University of Hong Kong); Jiabin Tang (The University of Hong Kong); Yong Xu (South China University of Technology); Lei Shi (Baidu Inc.); Long Xia (Baidu Inc.); Dawei Yin (Baidu Inc.); Chao Huang (The University of Hong Kong)

关键词:交通预测,大模型

备注:没有部署的ADS

UrbanGPT

6. Spatio-Temporal Consistency Enhanced Differential Network for Interpretable Indoor Temperature Prediction

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671608

作者:Dekang Qi (Southwest Jiaotong University, JD iCity, JD Technology); Xiuwen Yi (JD iCity, JD Technology, JD Intelligent Cities Research); Chengjie Guo (Xidian University); Yanyong Huang (Southwestern University of Finance and Economics); Junbo Zhang (JD iCity, JD Technology, JD Intelligent Cities Research); Tianrui Li (Southwest Jiaotong University); Yu Zheng (JD iCity, JD Technology, JD Intelligent Cities Research)

关键词:室内温度预测,可解释性预测,时空一致性

CONST

7. Weather Knows What Will Occur: Urban Public Nuisance Events Prediction and Control with Meteorological Assistance

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671639

作者:Yi Xie (Fudan University); Tianyu Qiu (Fudan University); Yun Xiong (Fudan University); Xiuqi Huang (Shanghai Jiaotong University); Xiaofeng Gao (Shanghai Jiao Tong University); Chao Chen (Sorbonne Université – Faculté des Sciences (Paris VI)); Qiang Wang (Shanghai Center for Meteorological Disaster Prevention Technology); Haihong Li (Shanghai Center for Meteorological Disaster Prevention Technology)

关键词:气象辅助的城市事件预测

ST-T3

Urban Mobility

8. Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction

链接https://arxiv.org/abs/2406.12923

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671507

作者:Wenzhao Jiang (The Hong Kong University of Science and Technology (Guangzhou)); Jindong Han (The Hong Kong University of Science and Technology); Hao Liu (The Hong Kong University of Science and Technology (Guangzhou), The Hong Kong University of Science and Technology); Tao Tao (Didichuxing Co. Ltd); Naiqiang Tan (Didichuxing Co. Ltd); Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou), The Hong Kong University of Science and Technology)

关键词:拥堵预测,混合专家系统

CP-MoE

9. TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera Records

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671558

作者:Dongen Wu (Zhejiang University); Ziquan Fang (Zhejiang University); Qichen Sun (Zhejiang University); Lu Chen (Zhejiang University); Haiyang Hu (Zhejiang University); Fei Wang (Zhejiang University); Yunjun Gao (Zhejiang University)

关键词:轨迹恢复

10. DuMapNet: An End-to-End Vectorization System for City-Scale Lane-Level Map Generation

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671579

链接https://arxiv.org/abs/2406.14255

代码https://github.com/XiyanLiu/DuMapNet

作者:Deguo Xia (Tsinghua University, Baidu Inc.); Weiming Zhang (Baidu Inc.); Xiyan Liu (Baidu Inc.); Wei Zhang (Baidu Inc.); Chenting Gong (Baidu Inc.); Jizhou Huang (Baidu Inc.); Mengmeng Yang (Tsinghua University); Diange Yang (Tsinghua University)

关键词:城市车道级别地图生成

DuMapNet

11. An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671606

链接https://arxiv.org/abs/2408.07327

作者:Taeyoung Yun (KAIST); Kanghoon Lee (KAIST); Sujin Yun (KAIST); Ilmyung Kim (Korea Telecom); Won-Woo Jung (Korea Telecom); Min-Cheol Kwon (Korea Telecom); Kyujin Choi (Korea Telecom); Yoohyeon Lee (Korea Telecom); Jinkyoo Park (KAIST)

关键词:交通灯,元学习,黑盒优化

12. FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction

链接https://zhouzimu.github.io/paper/kdd24-yang.pdf

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671613

代码https://github.com/LarryHawkingYoung/KDD2024_FedGTP

作者:Linghua Yang (SKLCCSE Lab, Beihang University); Wantong Chen (SKLCCSE Lab, Beihang University); Xiaoxi He (Faculty of Science and Technology, University of Macau); Shuyue Wei (SKLCCSE Lab, Beihang University); Yi Xu (SKLCCSE Lab, Institute of Artificial Intelligence, Beihang University); Zimu Zhou (School of Data Science, City University of Hong Kong); Yongxin Tong (SKLCCSE Lab, Beihang University)

关键词:交通预测,联邦学习

image-20240821172213246

13. PEMBOT: Pareto-Ensembled Multi-task Boosted Trees

链接https://www.amazon.science/publications/pembot-pareto-ensembled-multi-task-boosted-trees

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671619

作者:Gokul Swamy (International Machine Learning, Amazon); Anoop Saladi (International Machine Learning, Amazon); Arunita Das (International Machine Learning, Amazon); Shobhit Niranjan (International Machine Learning, Amazon)

关键词:帕累托最优,多任务

其他

14. FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting

链接https://arxiv.org/abs/2402.05823

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671509

作者:Ziqing Ma (DAMO Academy, Alibaba Group); Wenwei Wang (DAMO Academy, Alibaba Group); Tian Zhou (DAMO Academy, Alibaba Group); Chao Chen (DAMO Academy, Central South University); Bingqing Peng (DAMO Academy, Alibaba Group); Liang Sun (DAMO Academy, Alibaba Group); Rong Jin (DAMO Academy, Alibaba Group)

关键词:太阳能预测,模态聚合,向量量化,零样本

FusionSF

相关链接

; Bingqing Peng (DAMO Academy, Alibaba Group); Liang Sun (DAMO Academy, Alibaba Group); Rong Jin (DAMO Academy, Alibaba Group)

关键词:太阳能预测,模态聚合,向量量化,零样本

[外链图片转存中…(img-n0idp4l1-1725679952235)]

相关链接

KDD 2024 Applied Data Science Paperhttps://kdd2024.kdd.org/applied-data-science-track-papers/

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

这篇关于KDD 2024 时空数据(Spatio-temporal) ADS论文总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145326

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左