KDD 2024 时空数据(Spatio-temporal) ADS论文总结

2024-09-07 14:36

本文主要是介绍KDD 2024 时空数据(Spatio-temporal) ADS论文总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024 KDD( ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 知识发现和数据挖掘会议)在2024年8月25日-29日在西班牙巴塞罗那举行。

本文总结了KDD2024有关时空数据(Spatial-temporal) 的相关论文,如有疏漏,欢迎大家补充。

时空数据Topic:时空(交通)预测, 生成,拥堵预测,定价预测,气象预测,轨迹生成,预测,异常检测,信控优化等

ADS track中有2个session中与时空数据(城市计算)紧密相关:Spatiotemporal Applications 与 Urban Mobility,还有一些其余session中有一些做的时空数据任务。

KDD 2024 时空数据(Spatial-temporal) ADS论文总结
Spatiotemporal Applications

  1. Transportation Marketplace Rate Forecast Using Signature Transform
  2. MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge
  3. Diffusion Model-based Mobile Traffic Generation with Open Data for Network Planning and Optimization
  4. LaDe: The First Comprehensive Last-mile Express Dataset from Industry
  5. UrbanGPT: Spatio-Temporal Large Language Models
  6. Spatio-Temporal Consistency Enhanced Differential Network for Interpretable Indoor Temperature Prediction
  7. Weather Knows What Will Occur: Urban Public Nuisance Events Prediction and Control with Meteorological Assistance

Urban Mobility

  1. Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction
  2. TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera Records
  3. DuMapNet: An End-to-End Vectorization System for City-Scale Lane-Level Map Generation
  4. An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
  5. FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction
  6. PEMBOT: Pareto-Ensembled Multi-task Boosted Trees

其他

  1. FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

Spatiotemporal Applications

1. Transportation Marketplace Rate Forecast Using Signature Transform

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671637

链接https://arxiv.org/abs/2401.04857

作者:Haotian Gu (University of California, Berkeley); Xin Guo (Worldwide Operations Research Science, Amazon.com Inc., University of California, Berkeley); Timothy L. Jacobs (Worldwide Operations Research Science, Amazon.com Inc.); Philip Kaminsky (Worldwide Operations Research Science, Amazon.com Inc., University of California, Berkeley); Xinyu Li (University of California, Berkeley)

关键词:运价预测

2. MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671533

链接https://arxiv.org/abs/2407.01005

作者:Yuning Chen (University of California, Merced); Kang Yang (University of California, Merced); Zhiyu An (University of California, Merced); Brady Holder (University of California, Agriculture and Natural Resources); Luke Paloutzian (University of California, Agriculture and Natural Resources); Khaled M. Bali (University of California, Agriculture and Natural Resources); Wan Du (University of California, Merced)

关键词:时序预测,因果学习,模型预测控制

MARLP

3. Diffusion Model-based Mobile Traffic Generation with Open Data for Network Planning and Optimization

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671544

作者:Haoye Chai (Department of Electronic Engineering, BNRist, Tsinghua University); Tao Jiang (Research Center of 6G Mobile Communications, School of Cyber Science and Engineering, Huazhong University of Science and Technology); Li Yu (Chinamobile Research Institute)

关键词:交通数据生成,扩散模型,卫星图像

OpenDiff

4. LaDe: The First Comprehensive Last-mile Express Dataset from Industry

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671548

链接https://arxiv.org/abs/2306.10675

代码https://github.com/wenhaomin/LaDe

作者:Lixia Wu (Cainiao Network); Haomin Wen (School of Computer and Information Technology, Beijing Jiaotong University, Cainiao Network); Haoyuan Hu (Cainiao Network); Xiaowei Mao (School of Computer and Information Technology, Beijing Jiaotong University, Cainiao Network); Yutong Xia (National University of Singapore); Ergang Shan (Cainiao Network); Jianbin Zheng (Artificial Intelligence Department, Cainiao Network); Junhong Lou (Cainiao Network); Yuxuan Liang (Hong Kong University of Science and Technology (Guangzhou)); Liuqing Yang (Hong Kong University of Science and Technology (Guangzhou)); Roger Zimmermann (National University of Singapore); Youfang Lin (School of Computer and Information Technology, Beijing Jiaotong Univercity); Huaiyu Wan (School of Computer and Information Technology, Beijing Jiaotong University)

关键词:物流数据集,最后一公里配送

LaDe

5. UrbanGPT: Spatio-Temporal Large Language Models

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671578

链接https://arxiv.org/abs/2403.00813

代码https://github.com/HKUDS/UrbanGPT

作者:Zhonghang Li (South China University of Technology, The University of Hong Kong); Lianghao Xia (The University of Hong Kong); Jiabin Tang (The University of Hong Kong); Yong Xu (South China University of Technology); Lei Shi (Baidu Inc.); Long Xia (Baidu Inc.); Dawei Yin (Baidu Inc.); Chao Huang (The University of Hong Kong)

关键词:交通预测,大模型

备注:没有部署的ADS

UrbanGPT

6. Spatio-Temporal Consistency Enhanced Differential Network for Interpretable Indoor Temperature Prediction

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671608

作者:Dekang Qi (Southwest Jiaotong University, JD iCity, JD Technology); Xiuwen Yi (JD iCity, JD Technology, JD Intelligent Cities Research); Chengjie Guo (Xidian University); Yanyong Huang (Southwestern University of Finance and Economics); Junbo Zhang (JD iCity, JD Technology, JD Intelligent Cities Research); Tianrui Li (Southwest Jiaotong University); Yu Zheng (JD iCity, JD Technology, JD Intelligent Cities Research)

关键词:室内温度预测,可解释性预测,时空一致性

CONST

7. Weather Knows What Will Occur: Urban Public Nuisance Events Prediction and Control with Meteorological Assistance

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671639

作者:Yi Xie (Fudan University); Tianyu Qiu (Fudan University); Yun Xiong (Fudan University); Xiuqi Huang (Shanghai Jiaotong University); Xiaofeng Gao (Shanghai Jiao Tong University); Chao Chen (Sorbonne Université – Faculté des Sciences (Paris VI)); Qiang Wang (Shanghai Center for Meteorological Disaster Prevention Technology); Haihong Li (Shanghai Center for Meteorological Disaster Prevention Technology)

关键词:气象辅助的城市事件预测

ST-T3

Urban Mobility

8. Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction

链接https://arxiv.org/abs/2406.12923

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671507

作者:Wenzhao Jiang (The Hong Kong University of Science and Technology (Guangzhou)); Jindong Han (The Hong Kong University of Science and Technology); Hao Liu (The Hong Kong University of Science and Technology (Guangzhou), The Hong Kong University of Science and Technology); Tao Tao (Didichuxing Co. Ltd); Naiqiang Tan (Didichuxing Co. Ltd); Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou), The Hong Kong University of Science and Technology)

关键词:拥堵预测,混合专家系统

CP-MoE

9. TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera Records

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671558

作者:Dongen Wu (Zhejiang University); Ziquan Fang (Zhejiang University); Qichen Sun (Zhejiang University); Lu Chen (Zhejiang University); Haiyang Hu (Zhejiang University); Fei Wang (Zhejiang University); Yunjun Gao (Zhejiang University)

关键词:轨迹恢复

10. DuMapNet: An End-to-End Vectorization System for City-Scale Lane-Level Map Generation

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671579

链接https://arxiv.org/abs/2406.14255

代码https://github.com/XiyanLiu/DuMapNet

作者:Deguo Xia (Tsinghua University, Baidu Inc.); Weiming Zhang (Baidu Inc.); Xiyan Liu (Baidu Inc.); Wei Zhang (Baidu Inc.); Chenting Gong (Baidu Inc.); Jizhou Huang (Baidu Inc.); Mengmeng Yang (Tsinghua University); Diange Yang (Tsinghua University)

关键词:城市车道级别地图生成

DuMapNet

11. An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671606

链接https://arxiv.org/abs/2408.07327

作者:Taeyoung Yun (KAIST); Kanghoon Lee (KAIST); Sujin Yun (KAIST); Ilmyung Kim (Korea Telecom); Won-Woo Jung (Korea Telecom); Min-Cheol Kwon (Korea Telecom); Kyujin Choi (Korea Telecom); Yoohyeon Lee (Korea Telecom); Jinkyoo Park (KAIST)

关键词:交通灯,元学习,黑盒优化

12. FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction

链接https://zhouzimu.github.io/paper/kdd24-yang.pdf

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671613

代码https://github.com/LarryHawkingYoung/KDD2024_FedGTP

作者:Linghua Yang (SKLCCSE Lab, Beihang University); Wantong Chen (SKLCCSE Lab, Beihang University); Xiaoxi He (Faculty of Science and Technology, University of Macau); Shuyue Wei (SKLCCSE Lab, Beihang University); Yi Xu (SKLCCSE Lab, Institute of Artificial Intelligence, Beihang University); Zimu Zhou (School of Data Science, City University of Hong Kong); Yongxin Tong (SKLCCSE Lab, Beihang University)

关键词:交通预测,联邦学习

image-20240821172213246

13. PEMBOT: Pareto-Ensembled Multi-task Boosted Trees

链接https://www.amazon.science/publications/pembot-pareto-ensembled-multi-task-boosted-trees

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671619

作者:Gokul Swamy (International Machine Learning, Amazon); Anoop Saladi (International Machine Learning, Amazon); Arunita Das (International Machine Learning, Amazon); Shobhit Niranjan (International Machine Learning, Amazon)

关键词:帕累托最优,多任务

其他

14. FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting

链接https://arxiv.org/abs/2402.05823

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671509

作者:Ziqing Ma (DAMO Academy, Alibaba Group); Wenwei Wang (DAMO Academy, Alibaba Group); Tian Zhou (DAMO Academy, Alibaba Group); Chao Chen (DAMO Academy, Central South University); Bingqing Peng (DAMO Academy, Alibaba Group); Liang Sun (DAMO Academy, Alibaba Group); Rong Jin (DAMO Academy, Alibaba Group)

关键词:太阳能预测,模态聚合,向量量化,零样本

FusionSF

相关链接

; Bingqing Peng (DAMO Academy, Alibaba Group); Liang Sun (DAMO Academy, Alibaba Group); Rong Jin (DAMO Academy, Alibaba Group)

关键词:太阳能预测,模态聚合,向量量化,零样本

[外链图片转存中…(img-n0idp4l1-1725679952235)]

相关链接

KDD 2024 Applied Data Science Paperhttps://kdd2024.kdd.org/applied-data-science-track-papers/

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

这篇关于KDD 2024 时空数据(Spatio-temporal) ADS论文总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145326

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热