只需五步,三分钟极速部署企业级大数据平台服务

2024-09-07 09:08

本文主要是介绍只需五步,三分钟极速部署企业级大数据平台服务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

著名的 O’Reilly 公司断言:「数据是下一个 ‘Intel Inside’ ,未来属于利用数据并将其转换成产品的公司和人们。」

三分钟搭建一个企业级大数据平台?你不信吗?

大数据隐含的巨大社会、经济价值已经引起了越来越多企业的关注,为了让用户获得更便捷、灵活、高效的大数据解决方案,减少海量数据分析、处理、查询的延迟,青云QingCloud 基于 SparkMR 推出新一代可提供计算、存储、分析、查询一站式全方位的大数据服务 QingMR 。

作为 SparkMR 的升级版本,QingMR 包含了 HDFS 分布式文件系统,Hadoop MapReduce 和 Spark 数据处理框架,YARN 集群资源调度系统和 Hive 数据仓库工具。同时,更近一步集成了极速海量数据 OLAP 引擎 Kyligence Analytics Platform (基于 Apache Kylin),实现海量数据极速分析及查询功能。

PS:当前支持的组件及版本如下:

  • Apache Hadoop 2.7.3

  • Apache Spark 2.2.0

  • Apache Hive 1.2.2

  • Kyligence Analytics Platform 2.5.6

QingMR 功能特点

灵活的计算模式选择

QingMR 在底层提供统一的 HDFS 作为数据存储引擎,在上层提供 Spark 及与 MapReduce 两种计算引擎,并提供 YARN 作为调度系统。用户可以轻松实现三种不同的计算模式,即 Spark Standalone、Spark on YARN 和 MapReduce on YARN 三者之间的切换。

极速海量数据查询

提供 PB 级数据集上的亚秒级查询能力。

与大数据及存储组件高可扩展性

QingMR 支持指定依赖服务的功能,即通过 AppCenter 2.0 框架内原生的应用感知机制,实现与其他大数据分析组件之间自动化的无缝集成。

QingMR 与 QingStor™ 对象存储平台也进行了预置集成,用户可以通过简单的配置即可开启对 QingStor™ 对象存储的支持,以应对海量大规模数据的存储问题。

定义调度器、代理用户等多租户功能的支持

QingMR 提供了 Spark 及 YARN 的自定义调度器的功能,开放了自定义 Hadoop 代理用户功能。

完善的服务级别监控

三分钟搭建一个企业级大数据平台?你不信吗?

三分钟搭建一个企业级大数据平台?你不信吗?

可视化展现整体服务的运行情况,提供监控告警、健康检查和服务自动恢复等功能。

强大的AI及数据科学开发环境

提供 Python 及 R 两种语言的运行环境,支持 Python 2 和 Python 3 互相切换。 预置了多个 Anaconda 发行版的数据科学包,为数据科学和机器学习/深度学习等 AI 开发场景。

QingMR 应用场景

流式数据处理

通过 QingMR Spark 计算引擎流数据处理能力,对企业实时数据流进行计算,满足对实效性要求较高计算,适用于实时监控、报警分析分等场景。

批量数据处理

通过 QingMR Hadoop MapReduce 提供强大的批量数据处理能力,帮助企业解决海量文件的分析处理问题,可用于日志分析等场景。

极速数据查询与分析

通过 QingMR 中集成的 Kyligence Analytics Platform,减少海量数据查询延迟,满足企业 OLAP 场景中极速分析查询的需求。

机器学习

基于 Spark 内存计算模型框架,利用 Mlib 提供的机器学习算法,实现个性化推荐、流失预测、精确营销、客户细分、客户研究、市场细分、价值评估等应用场景。

QingMR,企业大数据服务最佳选择

对企业来说,只需五步,即可在 3 分钟之内部署一套 QingMR 大数据服务来满足自身的各种需求,同时还可进行统一的数据管理,无论从成本还是效率来说,QingMR 都是企业大数据服务最佳选择。

未来,还会有更多基于 HDFS 的大数据应用被纳入到 QingMR 中,为用户提供功能更为强大、使用更加便捷的大数据服务。

这篇关于只需五步,三分钟极速部署企业级大数据平台服务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1144653

相关文章

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除