【用户价值分析 RFM模型】用户价值分析

2024-09-07 06:32
文章标签 分析 模型 用户 价值 rfm

本文主要是介绍【用户价值分析 RFM模型】用户价值分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RFM模型是衡量客户价值和客户创利能力的重要工具和手段。RFM分析模型主要由三个指标组成,下面对这三个指标的定义和作用做下简单解释:

1、最近一次消费(Recency)
最近一次消费意指用户上一次购买的时间,理论上,上一次消费时间越近的顾客应该是比较好的顾客,对提供即时的商品或是服务也最有可能会有反应。因为最近一次消费指标定义的是一个时间段,并且与当前时间相关,因此是一直在变动的。最近一次消费对营销来说是一个重要指标,涉及吸引客户,保持客户,并赢得客户的忠诚度。
2、消费频率(Frequency)
消费频率是顾客在一定时间段内的消费次数。最常购买的消费者,忠诚度也就最高,增加顾客购买的次数意味着从竞争对手处偷取市场占有率,由别人的手中赚取营业额。
根据这个指标,我们又把客户分成五等分,这个五等分分析相当于是一个“忠诚度的阶梯”(loyalty ladder),其诀窍在于让消费者一直顺着阶梯往上爬,把销售想像成是要将两次购买的顾客往上推成三次购买的顾客,把一次购买者变成两次的。
3、消费金额(Monetary)
消费金额是对购彩产能的最直接的衡量指标,也可以验证“帕雷托法则”(Pareto’s Law)——公司80%的收入来自20%的顾客。

FRM就是根据客户活跃度和交易金额贡献,进行客户价值细分的一种方法。

RFM算法步骤:
1.计算RFM各项分值
R_S,距离当前日期越近,得分越高,最高7分,最低1分,按实际数据分布情况切割依次从高到低取分数。
F_S,交易频率越高,得分越高,最高7分,最低1分,按实际数据分布情况切割依次从高到低取分数。
M_S,交易金额越高,得分越高,最高7分,最低1分,按实际数据分布情况切割依次从高到低取分数。

2.归总RFM分值
RFM赋予权重(目前权重采用R:F:M = 1:1:1),权重乘以分数归总RFM分值。这个总RFM分值作为衡量用户价值的关键指标。公式如下:

3.根据RFM分值对客户分类

# encoding: utf-8"""
function:RFM用户价值分析分成5类
author:dongli
update_date:2018-06-07
"""# 导入包
import pandas as pd
######################################################写入excel设置问题#########################################
import xlsxwriter
# 定义RFM函数
def RFM(aggData):""":param aggData: 输入数据集,数据集字段要包含recency,frequency,monetary等三个字段:return:返回数据集结果"""# 计算R_Sbins = aggData.recency.quantile(q=[0, 0.28, 0.38, 0.46, 0.53, 0.57, 0.77, 1], interpolation='nearest')bins[0] = 0labels = [7, 6, 5, 4, 3, 2, 1]R_S = pd.cut(aggData.recency, bins, labels=labels)# 计算F_Sbins = aggData.frequency.quantile(q=[0, 0.29, 0.45, 0.60, 0.71, 0.76, 0.90, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]F_S = pd.cut(aggData.frequency, bins, labels=labels)# 计算M_Sbins = aggData.monetary.quantile(q=[0, 0.20, 0.26, 0.45, 0.55, 0.76, 0.85, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]M_S = pd.cut(aggData.monetary, bins, labels=labels)# 赋值aggData['R_S'] = R_SaggData['F_S'] = F_SaggData['M_S'] = M_S# 计算FRM值aggData['RFM'] = R_S.astype(int)*1 + F_S.astype(int)*1 + M_S.astype(int)*1# 根据RFM分值对客户分类#分五类bins = aggData.RFM.quantile(q=[0, 0.2, 0.4, 0.6, 0.8, 1],interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5]aggData['level'] = pd.cut(aggData.RFM,bins, labels=labels)# 分八类# bins = aggData.RFM.quantile(q=[0, 0.125, 0.25, 0.375, 0.5,0.625, 0.75, 0.875, 1],interpolation='nearest')# bins[0] = 0# labels = [1, 2, 3, 4, 5, 6, 7, 8]# aggData['level'] = pd.cut(aggData.RFM,bins, labels=labels )return aggData# 主函数
if __name__ == '__main__':# 读取数据aggData = pd.read_csv('C:\\Users\\xiaohu\\Desktop\\月刊数据\\4月份用户价值数据.csv')# 调用模型函数result=RFM(aggData)# 打印结果print(result)# 计算每个类别的数据量c1=list(result["level"].value_counts())# 计算每个类别所占的百分比c2 = list(result["level"].value_counts()/len(result)*100)c3=(list(map(lambda x:str(round(x,3))+"%",c2)))c=pd.DataFrame({"level":range(1,len(c1)+1),"数量":c1,"百分比":c3})print(c)# 写出csvresult.to_csv('C:\\Users\\xiaohu\\Desktop\\月刊数据\\result5_50_四月份.csv',index=False)# ## 先写出excel# workbook = xlsxwriter.Workbook("C:\\Users\\xiaohu\\Desktop\\月刊数据\\result_RFM.xlsx",options={'strings_to_urls': False})## format = workbook.add_format()# format = workbook.add_format()# format.set_border(1)# format_title = workbook.add_format()# format_title.set_border(1)# format_title.set_bg_color('#cccccc')# format_title.set_align('center')# format_title.set_bold()# format_ave = workbook.add_format()# format_ave.set_border(1)# format_ave.set_num_format('0')## data_format = workbook.add_format()# data_format.set_num_format('yyyy-mm-dd HH:MM:SS')# data_format.set_border(1)## worksheet2 = workbook.add_worksheet('用户价值')# title2 = [u'user_id', u'recency', u'frequency', u'monetary',u'R_S',u'F_S',u'M_S',u'RFM', u'level']## worksheet2.write_row('A1', title2, format_title)# worksheet2.write_column('A2:', result.iloc[:, 0], format_ave)# worksheet2.write_column('B2:', result.iloc[:, 1], format)# worksheet2.write_column('C2', result.iloc[:, 2], format)# worksheet2.write_column('D2', result.iloc[:, 3], format)# worksheet2.write_column('E2', result.iloc[:, 4], format)# worksheet2.write_column('F2', result.iloc[:, 5], format)# worksheet2.write_column('G2', result.iloc[:, 6], format)# worksheet2.write_column('H2', result.iloc[:, 7], format)# worksheet2.write_column('I2', result.iloc[:, 8], format)## workbook.close()#

RFM+kmeans算法

# encoding: utf-8
"""
function:RFM用户价值分析+kmeans算法自动划分
author:dongli
update_date:2018-05-09
"""# 导入包
from __future__ import  division
import pandas as pd
from sklearn.cluster import KMeans######################################python画图显示中文参数设置####################################
##########设置中文显示#################
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
font_size =11 # 字体大小
fig_size = (8, 6) # 图表大小
# 更新字体大小
mpl.rcParams['font.size'] = font_size
# 更新图表大小
mpl.rcParams['figure.figsize'] = fig_size
#################################################################################################### 定义RFM函数
def RFM(aggData):""":param aggData: 输入数据集,数据集字段要包含recency,frequency,monetary等三个字段:return:返回数据集结果"""# 计算R_Sbins = aggData.recency.quantile(q=[0, 0.31, 0.38, 0.46, 0.53, 0.57, 0.77, 1], interpolation='nearest')bins[0] = 0labels = [7, 6, 5, 4, 3, 2, 1]R_S = pd.cut(aggData.recency, bins, labels=labels)# 计算F_Sbins = aggData.frequency.quantile(q=[0, 0.29, 0.45, 0.60, 0.71, 0.76, 0.90, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]F_S = pd.cut(aggData.frequency, bins, labels=labels)# 计算M_Sbins = aggData.monetary.quantile(q=[0, 0.20, 0.26, 0.45, 0.55, 0.76, 0.85, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]M_S = pd.cut(aggData.monetary, bins, labels=labels)# 赋值aggData['R_S'] = R_SaggData['F_S'] = F_SaggData['M_S'] = M_S# 计算FRM值aggData['RFM'] = R_S.astype(int) + F_S.astype(int) + M_S.astype(int)#分五类bins = aggData.RFM.quantile(q=[0, 0.2, 0.4, 0.6, 0.8, 1],interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5]aggData['level'] = pd.cut(aggData.RFM,bins, labels=labels)return aggData# 读取数据
aggData = pd.read_csv('C:\\Users\\xiaohu\\Desktop\\用户价值分析\\用户价值分析RFM模型\\source\\RFM_Data_50.csv')
# print(aggData)aggData2=RFM(aggData)
print(aggData2)# 选择recency,frequency,monetary这三列
data=aggData2.loc[:,['recency','frequency','monetary']]print(data)# 定义数据标准化函数 Min-max 标准化
def Normalization(df):return df.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)))# 调用函数进行数据标准化(0-1)之间
zsredfile=Normalization(data)# 对列进行重命名
names = ['ZR','ZF','ZM']
zsredfile.columns = namesprint(zsredfile)##########################################选择最佳的K值########################################################"""
一般我们可以 通过迭代的方式选出合适的聚类个数 ,即让k值从1到K依次执行一遍,
再查看每一次k值对应的簇内离差平方和之和的变化,
如果变化幅度突然由大转小时,那个k值就是我们选择的合理个数
"""
K = range(1,15)
GSSE = []
for k in K:print(K)SSE = []kmeans = KMeans(n_clusters=k, random_state=10)kmeans.fit(zsredfile)labels = kmeans.labels_centers = kmeans.cluster_centers_for label in set(labels):SSE.append(np.sum(np.sum((zsredfile[['ZR', 'ZF','ZM']].loc[labels == label,] - centers[label, :]) ** 2)))GSSE.append(np.sum(SSE))# 绘制K的个数与GSSE的关系
plt.plot(K, GSSE, 'b*-')plt.xlabel('聚类个数')plt.ylabel('簇内离差平方和')plt.title('选择最优的聚类个数')plt.show()####################################################################################################################################选择最优的聚类个数为5
seed(123)
#调用sklearn的库函数
num_clusters = 5
kmeans = KMeans(n_clusters=num_clusters, random_state=1)
kmeans.fit(zsredfile)# 聚类结果标签
data['cluster'] = kmeans.labels_
# 聚类中心
centers = kmeans.cluster_centers_cluster_center = pd.DataFrame(kmeans.cluster_centers_)
# 绘制散点图
plt.scatter(x = zsredfile.iloc[:,0], y = zsredfile.iloc[:,1], c = data['cluster'], s=50, cmap='rainbow')
plt.scatter(centers[:,0], centers[:,1], c='k', marker = '*', s = 180)
plt.xlabel('ZR')
plt.ylabel('ZF')
plt.title('聚类效果图')
# 图形显示
plt.show()# # 查看RFM模型8个类别中的用户数量以及占比多少result=dataaggData2['cluster']=result["cluster"]
# 计算每个类别的数据量c1 = list(result["cluster"].value_counts())# 计算每个类别所占的百分比c2 = list(result["cluster"].value_counts() / len(result) * 100)c3 = (list(map(lambda x: str(round(x, 3)) + "%", c2)))c = pd.DataFrame({"level": range(1, len(c1) + 1), "数量": c1, "百分比": c3})print(c)# 写出csvaggData2.to_csv('C:\\Users\\xiaohu\\Desktop\\用户价值分析\\东篱最终项目\\【修改版】用户价值分析项目--东篱\\RFM+K-Means算法对公司客户价值自动划分--东篱\\resource\\python_result_kmeans_50.csv', index=False)cluster_center.to_csv('C:\\Users\\xiaohu\\Desktop\\用户价值分析\\东篱最终项目\\【修改版】用户价值分析项目--东篱\\RFM+K-Means算法对公司客户价值自动划分--东篱\\resource\\cluster_center.csv')

RFM+层次聚类

# -*- coding:utf-8 -*-#######################################
#加载相关库
#######################################
import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn.cluster import Birch
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.externals import joblib
import time
import datetime#######################################
#加载数据集及提取数列
#######################################customdata = pd.read_csv(r'C:\\Users\\xiaohu\\Desktop\\RFM\\out_custom_label.csv')new_custom_data = customdata[["R_S","F_S","M_S"]]new_custom_data = new_custom_data.astype(np.float32)
new_custom_data = new_custom_data.values#######################################
#数据标准化
#######################################new_custom_data = StandardScaler().fit_transform(new_custom_data)#######################################
#模型训练
#######################################Birch_model = Birch(threshold=0.85, branching_factor=500,n_clusters=None,compute_labels=True, copy=True).fit(new_custom_data)#######################################
#提取分类结果
#######################################label = Birch_model.labels_#print ("Calinski-Harabasz Score", metrics.calinski_harabaz_score(new_custom_data, Birch_model))label = pd.DataFrame(label)label.columns = ['cluster.label']outresult = pd.concat([customdata, label], axis = 1)cluster_center = pd.DataFrame(Birch_model.subcluster_centers_)
n_clusters = np.unique(label).size
print("n_clusters : %d" % n_clusters)#######################################
#结果输出
#######################################outresult.to_csv('C:\\Users\\xiaohu\\Desktop\\RFM\\birch_outresult.csv')
cluster_center.to_csv('C:\\Users\\xiaohu\\Desktop\\RFM\\cluster_center.csv')

这篇关于【用户价值分析 RFM模型】用户价值分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144324

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

SpringSecurity显示用户账号已被锁定的原因及解决方案

《SpringSecurity显示用户账号已被锁定的原因及解决方案》SpringSecurity中用户账号被锁定问题源于UserDetails接口方法返回值错误,解决方案是修正isAccountNon... 目录SpringSecurity显示用户账号已被锁定的解决方案1.问题出现前的工作2.问题出现原因各

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三