【python 走进NLP】simhash 算法计算两篇文章相似度

2024-09-07 06:18

本文主要是介绍【python 走进NLP】simhash 算法计算两篇文章相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

互联网网页存在大量的重复内容网页,无论对于搜索引擎的网页去重和过滤、新闻小说等内容网站的内容反盗版和追踪,还是社交媒体等文本去重和聚类,都需要对网页或者文本进行去重和过滤。最简单的文本相似性计算方法可以利用空间向量模型,计算分词后的文本的特征向量的相似性,这种方法存在效率的严重弊端,无法针对海量的文本进行两两的相似性判断。模仿生物学指纹的特点,对每个文本构造一个指纹,来作为该文本的标识,从形式上来看指纹一般为固定长度较短的字符串,相同指纹的文本可以认为是相同文本。

最简单的指纹构造方式就是计算文本的 md5 或者 sha 哈希值,除非输入相同的文本,否则会发生“雪崩效应”,极小的文本差异通过 md5 或者 sha计算出来的指纹就会不同(发生冲撞的概率极低),那么对于稍加改动的文本,计算出来的指纹也是不一样。因此,一个好的指纹应该具备如下特点:
1、指纹是确定性的,相同的文本的指纹是相同的;
2、 指纹越相似,文本相似性就越高;
3、 指纹生成和匹配效率高。

业界关于文本指纹去重的算法众多,如 k-shingle 算法、google 提出的simhash 算法、Minhash 算法、百度top k 最长句子签名算法等等。
下面介绍下simhash算法以及python应用

SimHash算法
simhash算法的主要思想是降维,将高维的特征向量映射成一个f-bit的指纹(fingerprint),通过比较两篇文章的f-bit指纹的Hamming Distance来确定文章是否重复或者高度近似。

主要分以下几步:

1、抽取文本中的关键词及其权重。

2、对关键词取传统hash,并与权重叠加,算出文本的fingerprint值。

3、计算出两个文本之间fingerprint值的海明距离。

python 前辈们早已实现该算法,我们安装相应的包即可。

pip install simhash

使用例子:

# -*- coding:utf-8 -*-
from simhash import Simhash
import redef filter_html(html):""":param html: html:return: 返回去掉html的纯净文本"""dr = re.compile(r'<[^>]+>',re.S)dd = dr.sub('',html).strip()return dd# 求两篇文章相似度
def simhash_similarity(text1,text2):""":param tex1: 文本1:param text2: 文本2:return: 返回两篇文章的相似度"""aa_simhash = Simhash(text1)bb_simhash = Simhash(text2)max_hashbit=max(len(bin(aa_simhash.value)), (len(bin(bb_simhash.value))))print(max_hashbit)# 汉明距离distince = aa_simhash.distance(bb_simhash)print(distince)similar=1-distince/max_hashbitreturn similarif __name__ == '__main__':text1="simhash算法的主要思想是降维,将高维的特征向量映射成一个低维的特征向量,通过两个向量的Hamming Distance来确定文章是否重复或者高度近似。"text2="simhash算法的主要思想是降维,将高维的特征向量映射成一个低维的特征向量,通过两个向量的Hamming Distance来确定文章是否重复或者高度近似。"similar=simhash_similarity(text1,text2)print(similar)

运行结果:

0b1110001100110011110000001000001110110100111000011010110110100101
0b1110001100110011110000001000001110110100111000011010110110100101
0
1.0Process finished with exit code 0

这篇关于【python 走进NLP】simhash 算法计算两篇文章相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1144294

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合