【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

本文主要是介绍【python 走进NLP】从零开始搭建textCNN卷积神经网络模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程

1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还不错。目前,tensorflow 的安装已经变得非常简单,一个简单的 pip install tensorflow 即可,然后 import tensorflow as tf 就能愉快玩耍了。

2、卷积神经网络,即CNN,它的核心思想是捕捉数据的局部特征。不仅仅在图像领域大放异彩,CNN在文本分类领域也有很强的表现。在Yoon Kim的这篇 论文 中,比较清楚地解释了CNN用于文本分类的原理,关键在于如何将文本向量化,如下图,即把每个词都表示为一个 1×k的向量,对长度为N的文本则表示为N×K的矩阵,经过这一步处理,那么我们就可以把图像上的分类经验应用到文本上来了。

def _read_file(txt_file):"""读取txt文件"""return open(txt_file, 'rb').read().decode("gbk", 'ignore')

3、那么又如何将文本转换为向量呢。有两种方法,第一种,采用预训练模型训练好的词向量。第二种呢,就是从原始文本中建立词汇表,然后把文本中的每个字符都对应编码。比如,“我爱北京天安门。”,我们就会把这段文本全部打散成为“我”、“爱”、“北”、“京”、“天”、“安”、“门”、“。”,甚至标点符号、特殊字符都会有对应的编码,不过从模型的表现来看,效果很好。

4、构建词汇表。筛选出的训练集语料中出现频次较高的5000个字符作为词汇表,我比较好奇的是我并没有对原始语料做任何的清洗、去噪,却丝毫不影响分类器的表现。添加一个 来将所有文本pad为同一长度

build_vocab(): 构建词汇表,使用字符级的表示,这一函数会将词汇表存储下来,避免每一次重复处理;

def build_vocab(train_path, vocab_path, vocab_size=5000):"""构建词汇表"""data_train, _ = read_file(train_path)all_data = []for content in data_train:all_data.extend(content)counter = Counter(all_data)counter_pairs = counter.most_common(vocab_size-1)words, _ = list(zip(*counter_pairs))words = ['<PAD>'] + list(words)open_file(vocab_path, mode='w').write('\n'.join(words) + '\n')

5、词汇表建立好了,txt文件并不适合查询,所以这里用字符在文件的顺序作为其标识的id,存储到字典 word_to_id 中,这样以来就方便查找了。
read_vocab(): 读取上一步存储的词汇表,转换为{词:id}表示;

def read_vocab(vocab_path):with open(vocab_path) as f:words = [_.strip() for _ in f.readlines()]word_to_id = dict(zip(words, range(len(words))))return words, word_to_id

6、因变量编码
read_category(): 将分类目录固定,转换为{类别: id}表示;

def read_category():categories = ['mil.news', 'cul', 'health', 'travel', 'auto', 'learning', 'it', 'yule', 'sports', 'business', 'news']cat_to_id = dict(zip(categories, range(len(categories))))return categories, cat_to_id

7、处理数据。做完构建词汇表、类别转换为one-hot编码的准备工作,终于要进入正题了,数据进入模型训练、验证、测试前的准备工作还没有做。下面, process_file() 函数首先读取数据文件,将正文和标签分别对应存储在 contents 和 labels 两个列表中,然后再处理 contents 中的每一段文本,把文本中每一个字符在词汇表中找到其对应的id,完成文本数值化操作。类别转换为one-hot表示: y_pad = kr.utils.to_categorical(label_id, num_classes=len(cat_to_id)) 。

process_file(): 将数据集从文字转换为固定长度的id序列表示;

def process_file(file_name, word_to_id, cat_to_id, max_length=600):contents, labels = read_file(file_name)data_id, label_id = [], []for i in range(len(contents)):data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id])label_id.append(cat_to_id[labels[i]])# 使用keras提供的pad_sequences来将文本pad为固定长度x_pad = kr.preprocessing.sequence.pad_sequences(data_id, max_length)y_pad = kr.utils.to_categorical(label_id, num_classes=len(cat_to_id))  # 将标签转换为one-hot表示return x_pad, y_pad

batch_iter(): 为神经网络的训练准备经过shuffle的批次的数据。

def batch_iter(x, y, batch_size=64):"""生成批次数据"""data_len = len(x)num_batch = int((data_len - 1) / batch_size) + 1indices = np.random.permutation(np.arange(data_len))x_shuffle = x[indices]y_shuffle = y[indices]for i in range(num_batch):start_id = i * batch_sizeend_id = min((i + 1) * batch_size, data_len)yield x_shuffle[start_id:end_id], y_shuffle[start_id:end_id]

8、CNN配置

class TCNNConfig(object):"""CNN配置参数"""embedding_dim = 64  # 词向量宽度seq_length = 1000  # 输入矩阵的宽度num_classes = 11  # 类别数num_filters = 256  # 卷积核数目kernel_size = 5  # 卷积核尺寸,即卷积核覆盖的词汇数量vocab_size = 6000  # 词汇表大小hidden_dim = 128  # 全连接层神经元dropout_keep_prob = 0.5  # dropout保留比例learning_rate = 1e-3  # 学习率batch_size = 64  # 每批训练大小num_epochs = 10  # 总迭代轮次print_per_batch = 100  # 每多少轮输出一次结果save_per_batch = 10  # 每多少轮存入tensorboard

9、CNN模型

class TextCNN(object):"""文本分类,CNN模型"""def __init__(self, config):self.config = config# 三个待输入的数据,腾出占位符# input_x 为 n * seq_length 的矩阵,n 大小不固定# input_y 同self.input_x = tf.placeholder(tf.int32, [None, self.config.seq_length], name='input_x')self.input_y = tf.placeholder(tf.float32, [None, self.config.num_classes], name='input_y')self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')self.cnn()def cnn(self):"""CNN模型"""# 词向量映射with tf.device('/cpu:0'): # 强制使用CPUembedding = tf.get_variable('embedding', [self.config.vocab_size, self.config.embedding_dim])embedding_inputs = tf.nn.embedding_lookup(embedding, self.input_x)with tf.name_scope("cnn"):# CNN layerconv = tf.layers.conv1d(embedding_inputs, self.config.num_filters, self.config.kernel_size, name='conv')# global max pooling layergmp = tf.reduce_max(conv, reduction_indices=[1], name='gmp')with tf.name_scope("score"):# 全连接层,后面接dropout以及relu激活# 激活函数后得到第二个全连接层fc = tf.layers.dense(gmp, self.config.hidden_dim, name='fc1')fc = tf.contrib.layers.dropout(fc, self.keep_prob)fc = tf.nn.relu(fc) # 修正线性单元激活函数,大于零才被激活# 分类器self.logits = tf.layers.dense(fc, self.config.num_classes, name='fc2')self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1)  # 预测类别,返回最大值的索引with tf.name_scope("optimize"):# 损失函数,交叉熵	cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits, labels=self.input_y)self.loss = tf.reduce_mean(cross_entropy)# 优化器self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss)with tf.name_scope("accuracy"):# 准确率correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls)self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

10、train训练

def train():print("Configuring TensorBoard and Saver...")# 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖tensorboard_dir = 'tensorboard/textcnn'if not os.path.exists(tensorboard_dir):os.makedirs(tensorboard_dir)tf.summary.scalar("loss", model.loss)tf.summary.scalar("accuracy", model.acc)merged_summary = tf.summary.merge_all()writer = tf.summary.FileWriter(tensorboard_dir)# 配置 Saversaver = tf.train.Saver()if not os.path.exists(save_dir):os.makedirs(save_dir)print("Loading training and validation data...")# 载入训练集与验证集start_time = time.time()x_train, y_train = process_file(train_dir, word_to_id, cat_to_id, config.seq_length)x_val, y_val = process_file(val_dir, word_to_id, cat_to_id, config.seq_length)time_dif = get_time_dif(start_time)print("Time usage:", time_dif)# 创建sessionsession = tf.Session()session.run(tf.global_variables_initializer())writer.add_graph(session.graph)print('Training and evaluating...')start_time = time.time()total_batch = 0  # 总批次best_acc_val = 0.0  # 最佳验证集准确率last_improved = 0  # 记录上一次提升批次require_improvement = 1000  # 如果超过1000轮未提升,提前结束训练flag = Falsefor epoch in range(config.num_epochs):print('Epoch:', epoch + 1)batch_train = batch_iter(x_train, y_train, config.batch_size)for x_batch, y_batch in batch_train:feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob)if total_batch % config.save_per_batch == 0:# 每多少轮次将训练结果写入tensorboard scalars = session.run(merged_summary, feed_dict=feed_dict)writer.add_summary(s, total_batch)if total_batch % config.print_per_batch == 0:# 每多少轮次输出在训练集和验证集上的性能feed_dict[model.keep_prob] = 1.0loss_train, acc_train = session.run([model.loss, model.acc], feed_dict=feed_dict)loss_val, acc_val = evaluate(session, x_val, y_val)  # todoif acc_val > best_acc_val:# 保存最好结果best_acc_val = acc_vallast_improved = total_batchsaver.save(sess=session, save_path=save_path)improved_str = '*'else:improved_str = ''time_dif = get_time_dif(start_time)msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \+ ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str))session.run(model.optim, feed_dict=feed_dict)  # 运行优化total_batch += 1if total_batch - last_improved > require_improvement:# 验证集正确率长期不提升,提前结束训练print("No optimization for a long time, auto-stopping...")flag = Truebreak  # 跳出循环if flag:  # 同上break

11、测试test函数

def test():print("Loading test data...")start_time = time.time()x_test, y_test = process_file(test_dir, word_to_id, cat_to_id, config.seq_length)session = tf.Session()session.run(tf.global_variables_initializer())saver = tf.train.Saver()saver.restore(sess=session, save_path=save_path)  # 读取保存的模型print('Testing...')loss_test, acc_test = evaluate(session, x_test, y_test)msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'print(msg.format(loss_test, acc_test))batch_size = 128data_len = len(x_test)num_batch = int((data_len - 1) / batch_size) + 1y_test_cls = np.argmax(y_test, 1)y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32)  # 保存预测结果for i in range(num_batch):  # 逐批次处理start_id = i * batch_sizeend_id = min((i + 1) * batch_size, data_len)feed_dict = {model.input_x: x_test[start_id:end_id],model.keep_prob: 1.0}y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict)# 评估print("Precision, Recall and F1-Score...")print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))# 混淆矩阵print("Confusion Matrix...")cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)print(cm)time_dif = get_time_dif(start_time)print("Time usage:", time_dif)

12、模型结构

在这里插入图片描述

demo:github项目学习地址:
https://github.com/gaussic/text-classification-cnn-rnn

这篇关于【python 走进NLP】从零开始搭建textCNN卷积神经网络模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144271

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚