【算法 2022】高效有用的机器学习算法和 Python 库

2024-09-07 05:48

本文主要是介绍【算法 2022】高效有用的机器学习算法和 Python 库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2022年已经到来,在此祝大家虎年大吉!2022年,下面几种机器学习算法和 Python 库将在未来更受欢迎!让我们花个几分钟一起来了解下:

一、CatBoost

CatBoost 可能是最新的算法,因为它随着越来越流行而不断更新。这个机器学习算法对于处理分类数据的数据科学家特别有用。您可以考虑 Random Forest 和 XGBoost 算法的优点,CatBoost 具有它们的大部分优点,同时还具有更多其它的优点。

  1. 无需担心参数调整——默认值通常会胜出,通常不值得手动调整,除非您想通过手动更改值来针对特定的异常分布

  2. 更准确——不太过拟合,并且当您使用更具分类性的特征时,往往会得到更准确的结果

  3. 快速——这种算法往往比其它基于树的算法更快,因为它不必担心用于示例的使用独热编码(one-hot
    encoding)的大型稀疏数据集,因为它使用了一种目标编码 更快地预测——您可以更快地训练,这样您也就可以更快地使用您的 CatBoost 模型进行预测

  4. SHAP——这个库被集成,便于解释整体模型的特征重要性以及特定预测总的来说,CatBoost
    非常棒,因为它易于使用、功能强大,在算法领域具有竞争力,并且可以列在您的简历中来增光添彩。它可以帮助您创建更好的模型,最终使您的项目更好地为您的公司服务。

适用任务:回归,分类,较适合分类模型

官方文档地址:catboost官网教程

二、PyCaret

因为没有太多的新算法需要讨论,我想包括一种能够比较几种算法的库,其中一些算法可能会更新迭代,所以比较新。这个 Python 库是开源和低代码的,可以被引用。当我开始比较并最终选择我的数据科学模型的最终算法时,它让我更加了解新的和即将流行的机器学习算法。

  1. 更少的编码时间——您不需要导入库,也不需要设置每个算法特有的每个预处理步骤,相反,您可以填写一些参数,让您可以将几乎所有您听说过的算法并排进行比较
  2. 易于使用——随着库的演变,它们的易用性也在不断提高。
  3. 端到端处理——可以研究从数据转换到预测结果的数据科学问题
  4. 集成良好——可以 Power BI 中使用 AutoML
  5. 整合——可以加入不同的算法以获得更多好处
  6. 校准和优化模型
  7. 关联规则挖掘
  8. 更重要的是,一次性比较 20+算法总的来说,这个库虽然并不是一个新算法,但是它很可能包含 2022
    年的新算法,或者至少是最新的算法,甚至像上面提到的 CatBoost
    这样的算法都包含在这个库中——这就是我如何发现它的。话虽如此,我认为重要的是要包含这个库,这样您不仅可以了解 2022
    年的最新算法,还可以了解您以前没有听说过或者错过的比较老的算法,因为您可以通过简单的用户界面将它们并排进行比较。

pycaret 官方文档教程

三、FastAPI

官方网站:官网教程

在这里插入图片描述

FastAPI是一个Python网页框架。FastAPI以其高效、易用赢得了开发者的青睐,直接挑战了Django和Flask的传统地位。FastAPI的优点是,类型检查、自动 swagger UI、支持异步、强大的依赖注入。

四、ddddocr

带带弟弟OCR通用验证码识别库,包含滑块识别算法,普通验证码识别

ddddocr是由sml2h3开发的专为验证码厂商进行对自家新版本验证码难易强度进行验证的一个python库,其由作者与kerlomz共同合作完成,通过大批量生成随机数据后进行深度网络训练,本身并非针对任何一家验证码厂商而制作,本库使用效果完全靠玄学,可能可以识别,可能不能识别。

安装:

pip install ddddocr

在这里插入图片描述

# -*- coding: utf-8 -*-import ddddocrocr = ddddocr.DdddOcr(old=True)with open("test.jpg", 'rb') as f:image = f.read()res = ocr.classification(image)
print(res)

识别结果:

欢迎使用ddddocr,本项目专注带动行业内卷,个人博客:wenanzhe.com
训练数据支持来源于:http://146.56.204.113:19199/preview
爬虫框架feapder可快速一键接入,快速开启爬虫之旅:https://github.com/Boris-code/feapder
3n3d

在这里插入图片描述

这篇关于【算法 2022】高效有用的机器学习算法和 Python 库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144226

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库