python scrapy爬虫框架 抓取BOSS直聘平台 数据可视化统计分析

本文主要是介绍python scrapy爬虫框架 抓取BOSS直聘平台 数据可视化统计分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用python scrapy实现BOSS直聘数据抓取分析

前言

  随着金秋九月的悄然而至,我们迎来了业界俗称的“金九银十”跳槽黄金季,周围的朋友圈中弥漫着探索新机遇的热烈氛围。然而,作为深耕技术领域的程序员群体,我们往往沉浸在代码的浩瀚宇宙中,享受着解决技术难题的乐趣,却也不经意间与职场外部的风云变幻保持了一定的距离,对行业动态或许仅有一鳞半爪的了解,甚至偶有盲区。

  但正是这份对技术的执着与热爱,铸就了我们程序猿独有的智慧与创造力。面对信息获取的局限,我们从不轻言放弃,而是选择以技术为舟,智慧为帆,主动出击,寻找破局之道。于是,我,一个满怀热情的程序员,决定利用我的技术专长,为这一难题量身打造解决方案。

  我将运用python爬虫技术,构建一套针对于BOSS直聘平台的数据抓取和统计分析脚本。这个脚本不仅能够实时抓取并分析薪资范围、所需经验和学历,还能根据关键词进行检索。如此,即便我们身处技术的深海,也能保持对外部世界的敏锐洞察,确保在每一次职业抉择中都能做出最优选择。

  通过这样的尝试,我希望能为广大的程序员朋友们搭建起一座桥梁,连接技术与职场,让每一位程序猿都能在技术的海洋中自由遨游的同时,也能精准把握每一次跃向更广阔天地的机会。

效果图

抓取的部分数据

在这里插入图片描述

统计分析图表

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

技术栈

  • 项目整体使用scrapy爬虫框架
  • 使用selenium解决动态网页加载
  • 使用pandas进行数据分析统计
  • 使用matplotlib实现图表生成

源代码

由于spiders框架会自动生成目录结构,所以这里我只放出核心代码,为大家提供一个思路,完整代码可访问我的GitHub.
import scrapy
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as ec
from selenium.webdriver.support.ui import WebDriverWait# 爬虫代码
class BossSpider(scrapy.Spider):name = "bossSpider"# 设置输出文件custom_settings = {'FEED_URI': 'BossData.csv',}# 创建WebDriver实例,不能开启无头模式,否则无法获取到数据driver = webdriver.Edge()query = input("输入要搜索的职位、公司:")page = 1def start_requests(self):url = f"https://www.zhipin.com/web/geek/job?query={self.query}&city=100010000"self.driver.get(url)yield scrapy.Request(url, callback=self.parse, meta={'driver': self.driver})def parse(self, response, **kwargs):driver = response.meta['driver']try:# 等待元素加载成功WebDriverWait(driver, 60).until(ec.presence_of_element_located((By.XPATH, '//div[@class="search-job-result"]//li[@class="job-card-wrapper"]')))job_elements = driver.find_elements(By.XPATH,'//div[@class="search-job-result"]//li[@class="job-card-wrapper"]')for element in job_elements:data_store = DataStore()# 职位名称data_store['name'] = element.find_element(By.XPATH, './/span[@class="job-name"]').text# 工作地点data_store['area'] = element.find_element(By.XPATH, './/span[@class="job-area"]').text# 薪水data_store['salary'] = element.find_element(By.XPATH, './/span[@class="salary"]').text# 标签(经验、学历)tag = element.find_element(By.XPATH, './/ul[@class="tag-list"]')tag_list = tag.find_elements(By.TAG_NAME, 'li')data_store['experience'] = tag_list[0].textdata_store['education'] = tag_list[1].text# 联系人data_store['contact_person'] = element.find_element(By.XPATH, './/div[@class="info-public"]').text# 公司logocompany_logo = element.find_element(By.XPATH, './/div[@class="company-logo"]')logo_img = company_logo.find_element(By.TAG_NAME, 'a').get_attribute('href')data_store['company_logo'] = logo_img# 公司名称data_store['company_name'] = element.find_element(By.XPATH, './/h3[@class="company-name"]').text# 公司标签company_tag_list = element.find_element(By.XPATH, './/ul[@class="company-tag-list"]')tag_list = company_tag_list.find_elements(By.TAG_NAME, 'li')data_store['company_tag'] = ','.join([tag.text for tag in tag_list if tag.text])# 职位描述footer = element.find_element(By.XPATH, './/div[@class="job-card-footer clearfix"]')tag_list = footer.find_elements(By.TAG_NAME, 'li')data_store['tag_list'] = ','.join([tag.text for tag in tag_list if tag.text])# 公司福利data_store['info_desc'] = footer.find_element(By.XPATH, './/div[@class="info-desc"]').textyield data_store.dataself.page += 1if self.page <= 3:next_page_url = f"https://www.zhipin.com/web/geek/job?query={self.query}&city=100010000&page={self.page}"self.driver.get(next_page_url)yield scrapy.Request(next_page_url, callback=self.parse, meta={'driver': self.driver})except Exception as e:# 处理超时异常或其他异常print(f"Error: {e}")yield None# 存储抓到的数据
class DataStore:def __init__(self):self.data = {}def __setitem__(self, key, value):self.data[key] = valuedef __getitem__(self, item):return self.data[item]
import pandas as pd
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文字体为黑体
plt.rcParams['axes.unicode_minus'] = False  # 正确显示负号# 数据分析
def data_analyse(csv, column, title, x_label, y_label):# 读取CSV文件data = pd.read_csv(csv)# 计数,并按升序排列value_counts = data[column].value_counts(ascending=True).sort_index(ascending=True)# 绘制柱状图value_counts.plot(kind='bar')# 在每个柱子顶部添加数字for i, val in enumerate(value_counts):plt.text(i, val, int(val), ha='center', va='bottom')# 设置标题plt.title(title)# 设置X轴标签plt.xlabel(x_label)# 设置Y轴标签plt.ylabel(y_label)# 自动调整子图参数,使之填充整个图表区域,边距不足时可能报错,但不会影响程序执行plt.tight_layout()plt.show()if __name__ == '__main__':data_analyse('BossData.csv', 'salary', '薪资统计', '范围', '数量')data_analyse('BossData.csv', 'experience', '经验统计', '经验', '数量')data_analyse('BossData.csv', 'education', '学历统计', '学历', '数量')

未来功能扩展

  • 不局限在BOSS平台,扩展多种平台的抓取和分析。
  • 增加更多的检索条件,提炼更加精准的数据分析。
  • 如果有足够的精力,可以考虑将数据存储在数据库表中,然后利用SQL语句和后端逻辑进行深入的数据分析还可以通过前端图表组件,如ECharts或D3.js,来创建直观且美观的数据可视化。

合法性

  • robots协议:由于互联网开放、互联互通的特点,尽管互联网企业可以在robots协议中通过技术术语告知搜索引擎的网络机器人其希望或不希望抓取的网页内容,但robots协议的初衷是为了指引搜索引擎的网络机器人更有效的抓取对网络用户有用的信息,从而更好地促进信息共享,而不应将robots协议作为限制信息流通的工具。
  • 技术手段:没有使用模拟登录、破解反爬机制等涉及网络安全的技术手段。
  • 数据用途:爬取的数据不会用于商业用途或侵犯个人隐私。
  • 网站压力:没有使用突破其IP封锁的技术,不会造成DDoS攻击。
  • 本程序仅供学习和研究之用。若您使用或参考本程序进行任何可能导致违法行为的操作,相关责任将由您自行承担。我们建议您在使用过程中遵守相关法律法规,确保所有行为合法合规。

结束语

  代码行数不多,能以少量的代码实现复杂的功能,是每位程序员的至高追求。在我当前的项目中,尽管所实现的功能看似并不纷繁复杂,但正是得益于Python语言的简洁与强大,使得这一过程变得既高效又优雅。Python以其易读性、易写性及丰富的库支持,极大地简化了开发流程,让我能够专注于功能的实现而非语法细节。

  当然,技术世界日新月异,BOSS直聘平台作为一个不断发展的平台,未来很可能会进行更新迭代。在此,我想对关注此项目的朋友们说,如果您在使用或测试过程中,提前发现了因平台更新而导致的功能兼容性问题,请不吝私信于我。我将在力所能及且时间允许的情况下,积极跟进并更新代码,以确保项目的持续可用性和稳定性。

  让我们共同期待,通过不断的学习与交流,能够在这个充满挑战与机遇的编程世界中,携手前行,共创更加辉煌的成就!

这篇关于python scrapy爬虫框架 抓取BOSS直聘平台 数据可视化统计分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143497

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: