算法篇_C语言实现霍夫曼编码算法

2024-09-06 23:36

本文主要是介绍算法篇_C语言实现霍夫曼编码算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

霍夫曼编码(Huffman Coding)是一种广泛使用的数据压缩算法,特别适用于无损数据压缩。它是由David A. Huffman在1952年提出的,并且通常用于文件压缩和传输中减少数据量。霍夫曼编码的核心思想是使用变长编码表对源数据进行编码,其中较频繁出现的数据项会被赋予较短的编码,而较少出现的数据项则会被赋予较长的编码。

该编码方法通过构建一种特殊的二叉树——霍夫曼树,为数据中的各个符号分配长度可变的前缀码,使得高频出现的符号具有较短的编码,而低频出现的符号则具有较长的编码。这种特性使得霍夫曼编码非常适合于压缩具有不均匀符号频率分布的数据集,能够有效地减小数据的存储空间或传输所需的带宽。

霍夫曼编码的工作原理如下:首先统计输入数据中每个符号出现的频率;然后基于这些频率值构造一个最小堆,其中堆中的每个元素都是一个只包含一个符号及其频率的树节点;接着反复从堆中取出频率最小的两个节点,合并成一个新的内部节点,该节点的频率为两个子节点频率之和,并将这个新节点放回堆中;重复这一过程直到堆中只剩下一个节点,这个节点即为霍夫曼树的根节点;最后,从根节点出发遍历整棵树,定义从根到任一叶节点的路径上,向左走标记为0,向右走标记为1,这样每个叶节点就对应了一个唯一的二进制编码,这就是霍夫曼编码。

霍夫曼编码的一个关键特征是其编码具有前缀性质,即没有任何一个符号的编码是另一个符号编码的前缀,这保证了在解码过程中可以唯一确定每一个编码所代表的符号,从而确保了压缩和解压过程的一致性。此外,霍夫曼编码是熵编码的一种形式,它利用了数据的统计特性来进行压缩,理论上可以达到接近于信息熵的压缩效率,即在理想情况下,压缩后的数据量等于数据的信息熵。

霍夫曼编码在文件压缩软件中,如WinZip、7-Zip,使用霍夫曼编码来压缩文件;在网络通信中,为了提高传输效率,会采用霍夫曼编码来压缩数据流;在图像处理和视频编码中,霍夫曼编码经常与其他编码技术结合使用,比如JPEG图像压缩标准就使用了霍夫曼编码来进一步压缩量化后的离散余弦变换系数。

在这里插入图片描述

下面是霍夫曼编码的基本步骤:

  1. 统计字符频率

    • 首先需要统计输入数据中每个字符出现的次数。
  2. 创建霍夫曼树(也称为最优二叉树)

    • 创建一个叶子节点集合,每个叶子节点包含一个字符和它的频率。
    • 反复执行以下操作,直到所有节点合并成一棵树:
      • 从集合中选出两个频率最低的节点作为新节点的左右子节点。
      • 新节点的频率是其两个子节点频率之和。
      • 将这个新节点加入集合中。
    • 最终剩下的那棵树就是霍夫曼树。
  3. 生成编码规则

    • 从霍夫曼树的根节点出发,向左走标记为0,向右走标记为1。
    • 每个叶子节点对应的路径上的数字序列即为其霍夫曼编码。
  4. 编码数据

    • 使用生成的霍夫曼编码表对原始数据进行编码。
  5. 解码数据

    • 解码时只需按照霍夫曼树从根节点开始,根据0或1沿着树向下移动即可还原出原始数据。

霍夫曼编码的一个重要特点是它是前缀编码,这意味着没有一个编码是另一个编码的前缀。这样可以确保编码后的数据可以唯一地解码回原始数据。

举个简单的例子来说明霍夫曼编码的过程:

假设我们有这样一个字符串:“ABACDAACAC”,其中字符A出现了5次,B出现了1次,C出现了4次,D出现了1次。

  1. 统计字符频率

    • A: 5
    • B: 1
    • C: 4
    • D: 1
  2. 创建霍夫曼树

    • 构建初始节点集合:{A(5), B(1), C(4), D(1)}
    • 合并B(1)和D(1),得到一个新节点BD(2)
    • 合并C(4)和BD(2),得到一个新节点CBDB(6)
    • 最后合并A(5)和CBDB(6),得到霍夫曼树的根节点。
  3. 生成编码规则

    • A: 0
    • B: 110
    • C: 10
    • D: 111
  4. 编码数据

    • “ABACDAACAC”编码后变为:“0110100011101000100”

二、算法设计(C语言)

2.1 霍夫曼编码算法实现

下面代码里实现了创建霍夫曼树、生成霍夫曼编码、对输入文本进行编码和解码的功能。编译运行这段代码可以得到每个字符的霍夫曼编码。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>#define MAX_TREE_HT 100// 霍夫曼树节点
struct MinHeapNode {char data;unsigned freq;struct MinHeapNode* left, * right;
};// 最小堆
struct MinHeap {unsigned size;unsigned capacity;struct MinHeapNode** array;
};// 创建新节点
struct MinHeapNode* newNode(char data, unsigned freq) {struct MinHeapNode* temp = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode));temp->left = temp->right = NULL;temp->data = data;temp->freq = freq;return temp;
}// 创建最小堆
struct MinHeap* createMinHeap(unsigned capacity) {struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap));minHeap->size = 0;minHeap->capacity = capacity;minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));return minHeap;
}// 交换两个最小堆节点
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) {struct MinHeapNode* t = *a;*a = *b;*b = t;
}// 堆化
void minHeapify(struct MinHeap* minHeap, int idx) {int smallest = idx;int left = 2 * idx + 1;int right = 2 * idx + 2;if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq)smallest = left;if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq)smallest = right;if (smallest != idx) {swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);minHeapify(minHeap, smallest);}
}// 检查大小是否为1
int isSizeOne(struct MinHeap* minHeap) {return (minHeap->size == 1);
}// 提取最小值节点
struct MinHeapNode* extractMin(struct MinHeap* minHeap) {struct MinHeapNode* temp = minHeap->array[0];minHeap->array[0] = minHeap->array[minHeap->size - 1];--minHeap->size;minHeapify(minHeap, 0);return temp;
}// 插入最小堆
void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) {++minHeap->size;int i = minHeap->size - 1;while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) {minHeap->array[i] = minHeap->array[(i - 1) / 2];i = (i - 1) / 2;}minHeap->array[i] = minHeapNode;
}// 构建最小堆
void buildMinHeap(struct MinHeap* minHeap) {int n = minHeap->size - 1;int i;for (i = (n - 1) / 2; i >= 0; --i)minHeapify(minHeap, i);
}// 检查是否是叶子节点
int isLeaf(struct MinHeapNode* root) {return !(root->left) && !(root->right);
}// 创建和构建最小堆
struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) {struct MinHeap* minHeap = createMinHeap(size);for (int i = 0; i < size; ++i)minHeap->array[i] = newNode(data[i], freq[i]);minHeap->size = size;buildMinHeap(minHeap);return minHeap;
}// 构建霍夫曼树
struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) {struct MinHeapNode* left, * right, * top;struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);while (!isSizeOne(minHeap)) {left = extractMin(minHeap);right = extractMin(minHeap);top = newNode('$', left->freq + right->freq);top->left = left;top->right = right;insertMinHeap(minHeap, top);}return extractMin(minHeap);
}// 打印编码
void printCodes(struct MinHeapNode* root, int arr[], int top) {if (root->left) {arr[top] = 0;printCodes(root->left, arr, top + 1);}if (root->right) {arr[top] = 1;printCodes(root->right, arr, top + 1);}if (isLeaf(root)) {printf("%c: ", root->data);for (int i = 0; i < top; ++i)printf("%d", arr[i]);printf("\n");}
}// 霍夫曼编码主函数
void HuffmanCodes(char data[], int freq[], int size) {struct MinHeapNode* root = buildHuffmanTree(data, freq, size);int arr[MAX_TREE_HT], top = 0;printCodes(root, arr, top);
}// 主函数
int main() {char arr[] = { 'a', 'b', 'c', 'd', 'e', 'f' };int freq[] = { 5, 9, 12, 13, 16, 45 };int size = sizeof(arr) / sizeof(arr[0]);HuffmanCodes(arr, freq, size);return 0;
}

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.2 数据的编码与还原

以下是使用霍夫曼编码算法对一段数据进行压缩和还原。代码包括生成霍夫曼树、生成编码表、对数据进行压缩和还原的功能。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>#define MAX_TREE_HT 100
#define MAX_CHAR 256// 霍夫曼树节点
struct MinHeapNode {unsigned char data;unsigned freq;struct MinHeapNode* left, * right;
};// 最小堆
struct MinHeap {unsigned size;unsigned capacity;struct MinHeapNode** array;
};// 创建新节点
struct MinHeapNode* newNode(unsigned char data, unsigned freq) {struct MinHeapNode* temp = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode));temp->left = temp->right = NULL;temp->data = data;temp->freq = freq;return temp;
}// 创建最小堆
struct MinHeap* createMinHeap(unsigned capacity) {struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap));minHeap->size = 0;minHeap->capacity = capacity;minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));return minHeap;
}// 交换两个最小堆节点
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) {struct MinHeapNode* t = *a;*a = *b;*b = t;
}// 堆化
void minHeapify(struct MinHeap* minHeap, int idx) {int smallest = idx;int left = 2 * idx + 1;int right = 2 * idx + 2;if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq)smallest = left;if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq)smallest = right;if (smallest != idx) {swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);minHeapify(minHeap, smallest);}
}// 检查大小是否为1
int isSizeOne(struct MinHeap* minHeap) {return (minHeap->size == 1);
}// 提取最小值节点
struct MinHeapNode* extractMin(struct MinHeap* minHeap) {struct MinHeapNode* temp = minHeap->array[0];minHeap->array[0] = minHeap->array[minHeap->size - 1];--minHeap->size;minHeapify(minHeap, 0);return temp;
}// 插入最小堆
void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) {++minHeap->size;int i = minHeap->size - 1;while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) {minHeap->array[i] = minHeap->array[(i - 1) / 2];i = (i - 1) / 2;}minHeap->array[i] = minHeapNode;
}// 构建最小堆
void buildMinHeap(struct MinHeap* minHeap) {int n = minHeap->size - 1;int i;for (i = (n - 1) / 2; i >= 0; --i)minHeapify(minHeap, i);
}// 检查是否是叶子节点
int isLeaf(struct MinHeapNode* root) {return !(root->left) && !(root->right);
}// 创建和构建最小堆
struct MinHeap* createAndBuildMinHeap(unsigned char data[], int freq[], int size) {struct MinHeap* minHeap = createMinHeap(size);for (int i = 0; i < size; ++i)minHeap->array[i] = newNode(data[i], freq[i]);minHeap->size = size;buildMinHeap(minHeap);return minHeap;
}// 构建霍夫曼树
struct MinHeapNode* buildHuffmanTree(unsigned char data[], int freq[], int size) {struct MinHeapNode* left, * right, * top;struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);while (!isSizeOne(minHeap)) {left = extractMin(minHeap);right = extractMin(minHeap);top = newNode('$', left->freq + right->freq);top->left = left;top->right = right;insertMinHeap(minHeap, top);}return extractMin(minHeap);
}// 生成编码表
void generateCodes(struct MinHeapNode* root, int arr[], int top, char* codes[]) {if (root->left) {arr[top] = 0;generateCodes(root->left, arr, top + 1, codes);}if (root->right) {arr[top] = 1;generateCodes(root->right, arr, top + 1, codes);}if (isLeaf(root)) {codes[root->data] = (char*)malloc(top + 1);for (int i = 0; i < top; ++i) {codes[root->data][i] = arr[i] + '0';}codes[root->data][top] = '\0';}
}// 压缩数据
void compressData(const char* data, char* codes[], char* compressed) {while (*data) {strcat(compressed, codes[(unsigned char)*data]);data++;}
}// 解码霍夫曼树
void decodeHuffmanTree(struct MinHeapNode* root, char* encoded, char* decoded) {struct MinHeapNode* current = root;while (*encoded) {if (*encoded == '0') {current = current->left;}else {current = current->right;}if (isLeaf(current)) {*decoded++ = current->data;current = root;}encoded++;}*decoded = '\0';
}// 打印编码表
void printCodes(char* codes[]) {for (int i = 0; i < MAX_CHAR; i++) {if (codes[i]) {printf("%c: %s\n", i, codes[i]);}}
}// 主函数
int main() {const char* data = "我是DS小龙哥-这是一段测试的数据,如果你可以正确的看到我,说明解码已经成功了";int freq[MAX_CHAR] = { 0 };for (int i = 0; data[i]; i++) {freq[(unsigned char)data[i]]++;}unsigned char uniqueChars[MAX_CHAR];int uniqueFreqs[MAX_CHAR];int size = 0;for (int i = 0; i < MAX_CHAR; i++) {if (freq[i]) {uniqueChars[size] = i;uniqueFreqs[size] = freq[i];size++;}}struct MinHeapNode* root = buildHuffmanTree(uniqueChars, uniqueFreqs, size);char* codes[MAX_CHAR] = { 0 };int arr[MAX_TREE_HT], top = 0;generateCodes(root, arr, top, codes);printf("Huffman Codes:\n");printCodes(codes);char compressed[1024] = { 0 };compressData(data, codes, compressed);printf("\nCompressed Data: %s\n", compressed);char decoded[1024] = { 0 };decodeHuffmanTree(root, compressed, decoded);printf("\nDecoded Data: %s\n", decoded);for (int i = 0; i < MAX_CHAR; i++) {if (codes[i]) {free(codes[i]);}}return 0;
}

这段代码实现了霍夫曼编码算法的压缩和解码功能。霍夫曼编码是一种无损数据压缩算法,利用字符在数据中出现的频率构建霍夫曼树,从而生成字符的二进制编码。

代码先定义了霍夫曼树节点和最小堆的结构,包含创建新节点、交换节点、堆化节点、提取最小值节点、插入最小堆和构建最小堆的功能。然后,通过辅助函数isLeaf检查节点是否为叶子节点。

通过buildHuffmanTree函数构建霍夫曼树,将字符和其对应的频率插入最小堆,反复提取两个最小频率节点,并将它们合并成一个新节点,再插回最小堆,直到堆中只剩一个节点,即为霍夫曼树的根节点。通过generateCodes函数递归遍历霍夫曼树,生成每个字符的霍夫曼编码,并存储在编码表中。

compressData函数使用生成的编码表将输入数据压缩为霍夫曼编码。

decodeHuffmanTree函数通过遍历霍夫曼树解码压缩后的数据,恢复原始数据。

printCodes辅助函数用于打印生成的霍夫曼编码表。

在主函数中,统计输入数据中每个字符的频率,然后构建霍夫曼树,生成编码表,对输入数据进行压缩,最后再对压缩后的数据进行解码,并打印结果。代码在实现霍夫曼编码和解码过程中,展示了从频率统计、树的构建、编码生成到数据压缩和解码的完整流程。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这篇关于算法篇_C语言实现霍夫曼编码算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143434

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句