windows C++ 并行编程-使用 加速器 对象(下)

2024-09-06 23:20

本文主要是介绍windows C++ 并行编程-使用 加速器 对象(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

并发运行时支持各种编程模型。 这些模型可能会与其他库的模型重叠或对其进行补充。 本部分中的文档将 OpenMP 与并发运行时进行比较,并提供有关如何迁移现有 OpenMP 代码以使用并发运行时的示例。

OpenMP 编程模型由开放标准定义,具有与 Fortran 和 C/C++ 编程语言定义完善的绑定。 OpenMP 2.0 版和 2.5 版(由 Microsoft C++ 编译器支持)都很适合迭代的并行算法;也就是说,它们在数据数组上执行并行迭代。 OpenMP 3.0 除了迭代任务外,还支持非迭代任务。

当预设了并行度,并匹配了系统上的可用资源时,OpenMP 的效率最高。 OpenMP 模型特别适合将大量运算问题分配到单一计算机的处理资源中的高性能计算。 在此方案中,硬件环境通常是固定的,开发人员可以合理期望执行该算法时拥有对所有计算资源的独占访问权限。

但是,OpenMP 可能不适合约束较少的计算环境。 例如,通过使用 OpenMP 2.0 和 2.5 来实现递归问题(如快速排序算法或搜索数据树)会更加困难。 并发运行时通过提供异步代理库和并行模式库 (PPL) 来补充 OpenMP 的功能。 异步代理库支持粗粒度任务并行性;PPL 支持更细粒度的并行任务。 并发运行时提供了并行执行操作所需的基础结构,以便可以专注于应用程序的逻辑。 但是,由于并发运行时支持各种编程模型,因此其计划开销可能大于其他并发库(如 OpenMP)。 因此,若要转换现有 OpenMP 代码以使用并发运行时,建议以增量方式测试性能。

如何:转换 OpenMP parallel for 循环以使用并发运行时

此示例演示了如何转换使用 OpenMP parallel 和 for 指令的基本循环来使用并发运行时 concurrency::parallel_for 算法。

示例 - 质数

此示例使用 OpenMP 和并发运行时来计算随机值数组中的质数计数。

// concrt-omp-count-primes.cpp
// compile with: /EHsc /openmp
#include <ppl.h>
#include <random>
#include <array>
#include <iostream>using namespace concurrency;
using namespace std;// Determines whether the input value is prime.
bool is_prime(int n)
{if (n < 2)return false;for (int i = 2; i < n; ++i){if ((n % i) == 0)return false;}return true;
}// Uses OpenMP to compute the count of prime numbers in an array.
void omp_count_primes(int* a, size_t size)
{if (size == 0)return;size_t count = 0;#pragma omp parallel forfor (int i = 0; i < static_cast<int>(size); ++i){if (is_prime(a[i])) {#pragma omp atomic++count;}}wcout << L"found " << count << L" prime numbers." << endl;
}// Uses the Concurrency Runtime to compute the count of prime numbers in an array.
void concrt_count_primes(int* a, size_t size)
{if (size == 0)return;combinable<size_t> counts;parallel_for<size_t>(0, size, [&](size_t i) {if (is_prime(a[i])) {counts.local()++;}});wcout << L"found " << counts.combine(plus<size_t>()) << L" prime numbers." << endl;
}int wmain()
{// The length of the array.const size_t size = 1000000;// Create an array and initialize it with random values.int* a = new int[size];mt19937 gen(42);for (size_t i = 0; i < size; ++i) {a[i] = gen();}// Count prime numbers by using OpenMP and the Concurrency Runtime.wcout << L"Using OpenMP..." << endl;omp_count_primes(a, size);wcout << L"Using the Concurrency Runtime..." << endl;concrt_count_primes(a, size);delete[] a;
}

本示例生成以下输出。

Using OpenMP...
found 107254 prime numbers.
Using the Concurrency Runtime...
found 107254 prime numbers.

parallel_for 算法和 OpenMP 3.0 允许索引类型为有符号整型或无符号整型类型。 parallel_for 算法还确保指定的范围不会溢出有符号类型。 OpenMP 版本 2.0 和 2.5 仅允许有符号整型索引类型。 OpenMP 也不验证索引范围。

此示例使用并发运行时的版本还使用并发 concurrency::combinable 对象代替 指令来递增计数器值,无需同步。

示例 - 使用 std::array

此示例对上一示例进行了修改,从而对 对象而不是本机数组执行操作。 由于 OpenMP 版本 2.0 和 2.5 仅允许 parallel_for 构造中使用有符号整型索引类型,因此不能使用迭代器并行访问 C++ 标准库容器的元素。 并行模式库 (PPL) 提供 concurrency::parallel_for_each 算法,该算法在迭代容器(例如 C++ 标准库提供的容器)上并行执行任务。 它与 parallel_for 算法使用相同的分区逻辑。 parallel_for_each 算法类似于 C++ 标准库 std::for_each 算法,但是 parallel_for_each 算法会并行执行任务。

// Uses OpenMP to compute the count of prime numbers in an 
// array object.
template<size_t Size>
void omp_count_primes(const array<int, Size>& a)
{if (a.size() == 0)return;size_t count = 0;int size = static_cast<int>(a.size());#pragma omp parallel forfor (int i = 0; i < size; ++i){if (is_prime(a[i])) {#pragma omp atomic++count;}}wcout << L"found " << count << L" prime numbers." << endl;
}// Uses the Concurrency Runtime to compute the count of prime numbers in an 
// array object.
template<size_t Size>
void concrt_count_primes(const array<int, Size>& a)
{if (a.size() == 0)return;combinable<size_t> counts;parallel_for_each(begin(a), end(a), [&counts](int n) {if (is_prime(n)) {counts.local()++;}});wcout << L"found " << counts.combine(plus<size_t>()) << L" prime numbers." << endl;
}
编译代码

复制示例代码,并将它粘贴到 Visual Studio 项目中,或粘贴到名为 concrt-omp-count-primes.cpp 的文件中,再在 Visual Studio 命令提示符窗口中运行以下命令。

cl.exe /EHsc /openmp concrt-omp-count-primes.cpp

这篇关于windows C++ 并行编程-使用 加速器 对象(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143403

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可