【2024高教社杯全国大学生数学建模竞赛】B题完整解析(含论文、代码分享)

本文主要是介绍【2024高教社杯全国大学生数学建模竞赛】B题完整解析(含论文、代码分享),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1问题重述
    • 1.1问题背景
    • 1.2研究意义
    • 1.3具体问题
  • 2 总体分析
  • 3 模型假设
  • 4 符号说明
  • 5 模型的建立与求解
  • 5.1问题一模型的建立与求解
    • 5.1.1问题的具体分析
      • 5.1.2模型的准备
      • **5.1.3模型的建立与求解**
  • 代码
    • 第一问
  • 完整论文&代码

1问题重述

1.1问题背景

1.2研究意义

1.3具体问题

2 总体分析

3 模型假设

4 符号说明

5 模型的建立与求解

5.1问题一模型的建立与求解

5.1.1问题的具体分析

问题一要求制定一个抽样检测计划,以决定是否接受一批零配件,基于供应商所声称的次品率。关键在于如何确定适当的样本量和决策标准,以最小化检测成本,同时确保决策的高可靠性。

在具体分析中,企业面临的主要挑战是在95%的置信水平下拒收次品率超过标称值的零配件,在90%的置信水平下接受次品率不超过标称值的零配件。这涉及到统计假设检验,特别是需要控制第一类错误(错误地拒绝良品)和第二类错误(错误地接受次品)的概率。
次品率的抽样检测通常采用二项分布进行建模,每个零配件要么合格,要么不合格,完全符合二项分布的特性。基于供应商提供的次品率标称值,可以设定零假设(次品率小于等于标称值)和备择假设(次品率大于标称值),并采用z检验或t检验等统计方法来决定是否拒收整批零配件。

在模型构建方面,首先需要定义这些假设,然后是确定样本量,这一步骤至关重要,以确保检验的功效,即最小化第一类和第二类错误的概率。这可以通过设定错误的容忍界限(例如α=5%,β=10%)和进行功效分析来实现。接着,需要设定决策规则,即根据样本次品率与临界值的比较结果来接受或拒绝零假设。

求解模型时,会计算在给定置信水平下的临界值,如果样本次品率大于此临界值,则拒绝零假设,否则接受。可以通过模拟抽样过程,计算样本次品率,并根据这些数据与临界值比较来确定是否接受或拒绝。这种方法可以为企业提供一个科学且经济有效的抽样检测方案,帮助企业在保证产品质量的同时控制相关成本。

5.1.2模型的准备

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

5.1.3模型的建立与求解

在这里插入图片描述

代码

第一问

from scipy.stats import binom
import matplotlib.pyplot as plt
from matplotlib import rcParamsrcParams['font.sans-serif'] = ['SimHei']
rcParams['axes.unicode_minus'] = Falsedef calculate_sample_size_and_visualize(p0, beta_accept, beta_reject):# 估计样本量的合理初始范围n_start = 30  # 假设样本量从30开始n_max = 500  # 最大样本量限制为500sample_sizes = []reject_probabilities = []accept_probabilities = []sample_size_found = Nonefor n in range(n_start, n_max, 10):  # 每次增加10个样本# 计算在p0条件下的拒收和接收概率p_reject = binom.cdf(int(n * p0), n, p0)p_accept = 1 - binom.cdf(int(n * p0), n, p0)# 存储每个样本量的结果,用于可视化sample_sizes.append(n)reject_probabilities.append(p_reject)accept_probabilities.append(p_accept)# 判断是否满足条件if p_reject <= beta_reject and p_accept >= beta_accept and sample_size_found is None:sample_size_found = n  # 记录找到的最小样本量# 如果没有找到符合条件的样本量,返回最大样本量if sample_size_found is None:sample_size_found = n_max# 返回结果及用于可视化的数据return sample_size_found, sample_sizes, reject_probabilities, accept_probabilities# 参数设置
p0 = 0.10  # 标称次品率
beta_accept = 0.90  # 90%接收概率
beta_reject = 0.05  # 5%拒收概率# 计算最小样本量并获取可视化数据
sample_size, sample_sizes, reject_probs, accept_probs = calculate_sample_size_and_visualize(p0, beta_accept,beta_reject)# 可视化输出
plt.figure(figsize=(10, 6))# 拒收概率曲线
plt.plot(sample_sizes, reject_probs, label="拒收概率", color='red', marker='o')
# 接收概率曲线
plt.plot(sample_sizes, accept_probs, label="接收概率", color='blue', marker='x')# 标注最小抽样量
plt.axvline(x=sample_size, color='green', linestyle='--', label=f"最小抽样量 = {sample_size}")# 图表标题和标签
plt.title('样本量与拒收/接收概率的关系')
plt.xlabel('样本量')
plt.ylabel('概率')
plt.legend()# 显示网格
plt.grid(True)# 显示图表
plt.show()

完整论文&代码

在这里插入图片描述
在这里插入图片描述

22页,18822字,完整论文与代码请看下方!

这篇关于【2024高教社杯全国大学生数学建模竞赛】B题完整解析(含论文、代码分享)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143243

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringBoot整合OpenFeign的完整指南

《SpringBoot整合OpenFeign的完整指南》OpenFeign是由Netflix开发的一个声明式Web服务客户端,它使得编写HTTP客户端变得更加简单,本文为大家介绍了SpringBoot... 目录什么是OpenFeign环境准备创建 Spring Boot 项目添加依赖启用 OpenFeig

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N