【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?

2024-09-06 21:44

本文主要是介绍【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

  • 【扩散模型(一)】中介绍了 Stable Diffusion 可以被理解为重建分支(reconstruction branch)和条件分支(condition branch)
  • 【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究
  • 【扩散模型(三)】IP-Adapter 源码详解1-训练输入 介绍了训练代码中的 image prompt 的输入部分,即 img projection 模块。
  • 【扩散模型(四)】IP-Adapter 源码详解2-训练核心(cross-attention)详细介绍 IP-Adapter 训练代码的核心部分,即插入 Unet 中的、针对 Image prompt 的 cross-attention 模块。
  • 【扩散模型(五)】IP-Adapter 源码详解3-推理代码 详细介绍 IP-Adapter 推理过程代码。
  • 【可控图像生成系列论文(四)】IP-Adapter 具体是如何训练的?1公式篇
  • 【扩散模型(六)】IP-Adapter 是如何训练的?2 源码篇(IP-Adapter Plus)
  • 【扩散模型(九)】IP-Adapter 与 IP-Adapter Plus 的具体区别是什么?

文章目录

  • 系列文章目录
    • adapter_modules 分为两类
  • 总结


通过前面的系列文章,很清楚要训练的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。

而 image_proj_model 这块比较简单,原码如下所示

    # freeze parameters of models to save more memoryunet.requires_grad_(False)vae.requires_grad_(False)text_encoder.requires_grad_(False)image_encoder.requires_grad_(False)#ip-adapterimage_proj_model = ImageProjModel(cross_attention_dim=unet.config.cross_attention_dim,clip_embeddings_dim=image_encoder.config.projection_dim,clip_extra_context_tokens=4,)

adapter_modules 分为两类

  1. AttnProcessor 对应 self attention
  2. IPAttnProcessor 对应 cross attention

按理说 self attention 对应的 AttnProcessor 应该不会被训练,但是 training = True,便让人非常费解。
在这里插入图片描述
进一步查看 AttnProcessor2_0 和 IPAttnProcessor2_0 后,就清楚了,因为从 AttnProcessor2_0 的构造函数(init)中并没有参数,就算是 trianing = True 也并不影响训练,实际训练的模块还是 IPAttnProcessor2_0 构造函数中的 to_k_ip 和 to_v_ip 两层 linear!

class AttnProcessor2_0(torch.nn.Module):r"""Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0)."""def __init__(self,hidden_size=None,cross_attention_dim=None,):super().__init__()if not hasattr(F, "scaled_dot_product_attention"):raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")def __call__(
...class IPAttnProcessor2_0(torch.nn.Module):r"""Attention processor for IP-Adapater for PyTorch 2.0.Args:hidden_size (`int`):The hidden size of the attention layer.cross_attention_dim (`int`):The number of channels in the `encoder_hidden_states`.scale (`float`, defaults to 1.0):the weight scale of image prompt.num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):The context length of the image features."""def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):super().__init__()if not hasattr(F, "scaled_dot_product_attention"):raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")self.hidden_size = hidden_sizeself.cross_attention_dim = cross_attention_dimself.scale = scaleself.num_tokens = num_tokensself.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)def __call__(

总结

  1. IP-Adapter 训的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。
  2. 在 adapter_modules 中,实际只训了 IPAttnProcessor2_0 的 to_k_ip 和 to_v_ip。
  3. adapter_modules 是在每个有含有 cross attention 的 unet block 里进行的替换,如下图所示。

在这里插入图片描述

这篇关于【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143206

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技