【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?

2024-09-06 21:44

本文主要是介绍【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

  • 【扩散模型(一)】中介绍了 Stable Diffusion 可以被理解为重建分支(reconstruction branch)和条件分支(condition branch)
  • 【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究
  • 【扩散模型(三)】IP-Adapter 源码详解1-训练输入 介绍了训练代码中的 image prompt 的输入部分,即 img projection 模块。
  • 【扩散模型(四)】IP-Adapter 源码详解2-训练核心(cross-attention)详细介绍 IP-Adapter 训练代码的核心部分,即插入 Unet 中的、针对 Image prompt 的 cross-attention 模块。
  • 【扩散模型(五)】IP-Adapter 源码详解3-推理代码 详细介绍 IP-Adapter 推理过程代码。
  • 【可控图像生成系列论文(四)】IP-Adapter 具体是如何训练的?1公式篇
  • 【扩散模型(六)】IP-Adapter 是如何训练的?2 源码篇(IP-Adapter Plus)
  • 【扩散模型(九)】IP-Adapter 与 IP-Adapter Plus 的具体区别是什么?

文章目录

  • 系列文章目录
    • adapter_modules 分为两类
  • 总结


通过前面的系列文章,很清楚要训练的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。

而 image_proj_model 这块比较简单,原码如下所示

    # freeze parameters of models to save more memoryunet.requires_grad_(False)vae.requires_grad_(False)text_encoder.requires_grad_(False)image_encoder.requires_grad_(False)#ip-adapterimage_proj_model = ImageProjModel(cross_attention_dim=unet.config.cross_attention_dim,clip_embeddings_dim=image_encoder.config.projection_dim,clip_extra_context_tokens=4,)

adapter_modules 分为两类

  1. AttnProcessor 对应 self attention
  2. IPAttnProcessor 对应 cross attention

按理说 self attention 对应的 AttnProcessor 应该不会被训练,但是 training = True,便让人非常费解。
在这里插入图片描述
进一步查看 AttnProcessor2_0 和 IPAttnProcessor2_0 后,就清楚了,因为从 AttnProcessor2_0 的构造函数(init)中并没有参数,就算是 trianing = True 也并不影响训练,实际训练的模块还是 IPAttnProcessor2_0 构造函数中的 to_k_ip 和 to_v_ip 两层 linear!

class AttnProcessor2_0(torch.nn.Module):r"""Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0)."""def __init__(self,hidden_size=None,cross_attention_dim=None,):super().__init__()if not hasattr(F, "scaled_dot_product_attention"):raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")def __call__(
...class IPAttnProcessor2_0(torch.nn.Module):r"""Attention processor for IP-Adapater for PyTorch 2.0.Args:hidden_size (`int`):The hidden size of the attention layer.cross_attention_dim (`int`):The number of channels in the `encoder_hidden_states`.scale (`float`, defaults to 1.0):the weight scale of image prompt.num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):The context length of the image features."""def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):super().__init__()if not hasattr(F, "scaled_dot_product_attention"):raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")self.hidden_size = hidden_sizeself.cross_attention_dim = cross_attention_dimself.scale = scaleself.num_tokens = num_tokensself.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)def __call__(

总结

  1. IP-Adapter 训的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。
  2. 在 adapter_modules 中,实际只训了 IPAttnProcessor2_0 的 to_k_ip 和 to_v_ip。
  3. adapter_modules 是在每个有含有 cross attention 的 unet block 里进行的替换,如下图所示。

在这里插入图片描述

这篇关于【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143206

相关文章

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编