轻量级异步屏障快照(ABS)算法解析

2024-09-06 21:08

本文主要是介绍轻量级异步屏障快照(ABS)算法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

暴走大数据

点击右侧关注,暴走大数据!

在很久之前,笔者曾简单介绍了Chandy-Lamport分布式快照算法。而Flink的检查点过程正是依赖于Chandy-Lamport算法的“本地化”版本——异步屏障快照(asynchronous barrier snapshotting, ABS)算法。该算法由五位大佬(其中也包含Data Artisans的两位:Stephen Ewen与Kostas Tzoumas)通过论文《Lightweight Asynchronous Snapshots for Distributed Dataflows》提出。可以说,理解了ABS,就理解了Flink检查点背后的原理。本文来谈谈它。

Checkpoint & Snapshot

检查点是Flink为流计算过程提供的容错和故障恢复机制。当程序出错时,Flink会重启受到影响的那部分算子及计算逻辑,并将它们重置到最后一次成功checkpoint时的状态。每次成功的checkpoint产生的“状态数据”其实就是这个流式计算任务在那一时刻的快照。

Flink作业可以抽象成有向图表示,图的顶点是算子(operator),边是数据流(data stream),与C-L算法提出的“进程-链路”图模型恰好对应。直接套用C-L算法的思路,我们可以得出如下推论:

  • Flink作业的快照要包含两部分,即算子所处的状态以及数据流承载的数据。算子每收到/发出一条数据,以及数据流每流入/流出一条数据,都会造成全局状态改变。

  • 算子可以感知到自己的状态,但数据流的状态不容易记录,主要是因为承载的数据量太大。

  • 时间是无法静止的(即数据总是在流动的),并且快照不能stop-the-world,否则会造成延迟和数据堆积,降低吞吐量。

所以解决方案的要点有二:一是通过每个算子自己记录的状态合并出全局快照,二是引入一个标记把数据流从时域上切分成段。下面就可以了解ABS算法的基础——屏障。

Barrier

之前已经讲过,C-L算法引入了marker消息来作为快照的边界,即区分“当前快照的数据”和“下一个快照的数据”。ABS算法也有自己的marker消息,不过称为检查点屏障(checkpoint barrier),简称屏障。

屏障由Flink的JobManager周期性产生(周期长度由StreamExecutionEnvironment.enableCheckpointing()方法来指定),并广播给所有Source算子,沿着数据流流动下去。下图示出一条带有屏障的数据流。

可见,第n - 1个屏障之后、第n个屏障之前的所有数据都属于第n个检查点。下游算子如果检测到屏障的存在,就会触发快照动作,不必再关心时间无法静止的问题。下面继续了解快照阶段是如何执行的。

Snapshotting

仍然举例说明。下图是论文中给出的并行度为2的Word Count示例,注意该作业的执行计划为有向无环图(DAG)。

快照算法的步骤如下:

a) Source算子接收到JobManager产生的屏障,生成自己状态的快照(其中包含数据源对应的offset/position信息),并将屏障广播给下游所有数据流;

b)、c) 下游非Source的算子从它的某个输入数据流接收到屏障后,会阻塞这个输入流,继续接收其他输入流,直到所有输入流的屏障都到达(图中的count-2算子接收的两个屏障就不是同时到达的)。一旦算子收齐了所有屏障,它就会生成自己状态的快照,并继续将屏障广播给下游所有数据流;

d) 快照生成后,算子解除对输入流的阻塞,继续进行计算。Sink算子接收到屏障之后会向JobManager确认,所有Sink都确认收到屏障标记着这一周期checkpoint过程结束,快照成功。

可见,如果算子只有一个输入流的话,问题就比较简单,只需要在收到屏障之后立即做快照。但是如果有多个输入流,就必须要等待收到所有屏障才能做快照,以避免将检查点n与检查点n + 1的数据混淆。这个等待的过程就叫做对齐(alignment),图来自官方文档。注意算子内部有个输入缓冲区,用来在对齐期间缓存数据。


下图是从Flink系统的角度示出整个checkpoint流程里屏障的流动,以及快照数据向状态后端的写入。注意Source记录的offset值以及Sink收到所有屏障后的ack信号。

Exactly-Once vs At-Least-Once

上面讲到的屏障对齐过程是Flink Exactly-Once语义的基础,因为屏障对齐能够保证多输入流的算子正常处理不同checkpoint区间的数据,避免它们发生交叉,即不会有数据被处理两次。

但是对齐过程需要时间,有一些对延迟特别敏感的应用可能对准确性的要求没有那么高。所以Flink也允许在StreamExecutionEnvironment.enableCheckpointing()方法里指定At-Least-Once语义,会取消屏障对齐,即算子收到第一个输入的屏障之后不会阻塞。这样一来,部分属于检查点n + 1的数据也会包括进检查点n的数据里, 当恢复时,这部分数据就会被重复处理。

Asynchronous

“屏障”和“快照”都讲过了,“异步”呢?这个词实际上指的是快照数据写入的异步性:算子收齐屏障并触发快照之后,不会等待快照数据全部写入状态后端,而是一边后台写入,一边立刻继续处理数据流,并将屏障发送到下游,实现了最小化延迟。

当然,引入异步性之后,checkpoint成功的条件除了所有Sink都报告ack之外,还得加上一条:所有有状态的算子都报告ack,否则JobManager就无法确认异步写入到底完成没有。

DCG

ABS的精华讲完了。最后看论文中提到的特殊情况,即作业的执行计划是个有向有环图(DCG)。很显然这种情况会造成死锁,环内的算子就会无限等待收齐屏障。面对该问题,ABS算法会单独处理回边(back edge)——即从下游流回上游的数据流,因为回边的存在会导致我们无法单纯地通过每个算子的状态合并出全局快照。

思路如下图所示,重点在于回边终点的那个算子。当该算子的非回边输入流的屏障都到达之后,它会生成一个本地的快照备份,并于此同时开始记录回边流入的数据,直到再次从回边收到相同的屏障。这样就靠算子的状态记录了回边的状态,当从快照恢复时,能够将回边的数据重新放回数据流传输。

作者:LittleMagic
链接:https://www.jianshu.com/p/d5a452466375

欢迎点赞+收藏+转发朋友圈素质三连

文章不错?点个【在看】吧! ????

这篇关于轻量级异步屏障快照(ABS)算法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143126

相关文章

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六