Flink新增特性 | CDC(Change Data Capture) 原理和实践应用

2024-09-06 20:18

本文主要是介绍Flink新增特性 | CDC(Change Data Capture) 原理和实践应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

大数据真好玩

点击右侧关注,大数据真好玩!

CDC简介

CDC,Change Data Capture,变更数据获取的简称,使用CDC我们可以从数据库中获取已提交的更改并将这些更改发送到下游,供下游使用。这些变更可以包括INSERT,DELETE,UPDATE等。

用户可以在以下的场景下使用CDC:

  • 使用flink sql进行数据同步,可以将数据从一个数据同步到其他的地方,比如mysql、elasticsearch等。

  • 可以在源数据库上实时的物化一个聚合视图

  • 因为只是增量同步,所以可以实时的低延迟的同步数据

  • 使用EventTime join 一个temporal表以便可以获取准确的结果

Flink 1.11 将这些changelog提取并转化为Table API和SQL,目前支持两种格式:Debezium和Canal,这就意味着源表不仅仅是append操作,而且还有upsert、delete操作。

Flink CDC 功能适用的一些场景:

  • 数据库之间的增量数据同步

  • 审计日志

  • 数据库之上的实时物化视图

  • 基于CDC的维表join

Flink  CDC使用方式


目前Flink支持两种内置的connector,PostgreSQL和mysql,接下来我们以mysql为例。

Flink 1.11仅支持Kafka作为现成的变更日志源和JSON编码的变更日志,而Avro(Debezium)和Protobuf(Canal)计划在将来的版本中使用。还计划支持MySQL二进制日志和Kafka压缩主题作为源,并将扩展日志支持扩展到批处理执行。

Flink CDC当作监听器获取增量变更

传统的实时链路如何实现业务数据的同步,我们以canal为例,传统业务数据实时同步会涉及到canal处理mysql的binlog然后同步到kafka,在通过计算引擎spark,flink或storm计算转化,再结果数据传输到第三方存储(hbase,es)如下图所示主要分为三个模块E(Extract) ,T(Transform), L(Load).可以看到涉及的组件很多,链路很长。

我们可以直接Flink CDC消费数据库的增量日志,替代了原来作为数据采集层的canal,然后直接进行计算,经过计算之后,将计算结果 发送到下游。整体架构如下:

使用这种架构是好处有:

  • 减少canal和kafka的维护成本,链路更短,延迟更低

  • flink提供了exactly once语义

  • 可以从指定position读取

  • 去掉了kafka,减少了消息的存储成本

我们需要引入相应的pom,mysql的pom如下:

<dependency><groupId>com.alibaba.ververica</groupId><artifactId>flink-connector-mysql-cdc</artifactId><version>1.1.0</version>
</dependency>

如果是sql客户端使用,需要下载 flink-sql-connector-mysql-cdc-1.1.0.jar 并且放到<FLINK_HOME>/lib/下面

连接mysql数据库的示例sql如下:

-- creates a mysql cdc table source
CREATE TABLE mysql_binlog (id INT NOT NULL,name STRING,description STRING,weight DECIMAL(10,3)
) WITH ('connector' = 'mysql-cdc','hostname' = 'localhost','port' = '3306','username' = 'flinkuser','password' = 'flinkpw','database-name' = 'inventory','table-name' = 'products'
);

使用API的方式:

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import com.alibaba.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;public class MySqlBinlogSourceExample {public static void main(String[] args) throws Exception {SourceFunction<String> sourceFunction = MySQLSource.<String>builder().hostname("localhost").port(3306).databaseList("inventory") // monitor all tables under inventory database.username("flinkuser").password("flinkpw").deserializer(new StringDebeziumDeserializationSchema()) // converts SourceRecord to String.build();StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.addSource(sourceFunction).print().setParallelism(1); // use parallelism 1 for sink to keep message orderingenv.execute();}
}

Flink CDC 当作转换工具

如果需要Flink承担的角色是计算层,那么目前Flink提供的format有两种格式:canal-json和debezium-json,下面我们简单的介绍下。

如果要使用Kafka的canal-json,对于程序而言,需要添加如下依赖:

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.11</artifactId><version>1.11.0</version>
</dependency>

我们可以直接消费canal-json数据:

CREATE TABLE topic_products (id BIGINT,name STRING,description STRING,weight DECIMAL(10, 2)
) WITH ('connector' = 'kafka','topic' = 'products_binlog','properties.bootstrap.servers' = 'localhost:9092','properties.group.id' = 'testGroup','format' = 'canal-json'  -- using canal-json as the format
)

changelog format

如果要使用Kafka的changelog-json Format,对于程序而言,需要添加如下依赖:

<dependency><groupId>com.alibaba.ververica</groupId><artifactId>flink-format-changelog-json</artifactId><version>1.0.0</version>
</dependency>

如果要使用Flink SQL Client,需要添加如下jar包:flink-format-changelog-json-1.0.0.jar,将该jar包放在Flink安装目录的lib文件夹下即可。

-- assuming we have a user_behavior logs
CREATE TABLE user_behavior (user_id BIGINT,item_id BIGINT,category_id BIGINT,behavior STRING,ts TIMESTAMP(3)
) WITH ('connector' = 'kafka',  -- using kafka connector'topic' = 'user_behavior',  -- kafka topic'scan.startup.mode' = 'earliest-offset',  -- reading from the beginning'properties.bootstrap.servers' = 'localhost:9092',  -- kafka broker address'format' = 'json'  -- the data format is json
);-- we want to store the the UV aggregation result in kafka using changelog-json format
create table day_uv (day_str STRING,uv BIGINT
) WITH ('connector' = 'kafka','topic' = 'day_uv','scan.startup.mode' = 'earliest-offset',  -- reading from the beginning'properties.bootstrap.servers' = 'localhost:9092',  -- kafka broker address'format' = 'changelog-json'  -- the data format is json
);-- write the UV results into kafka using changelog-json format
INSERT INTO day_uv
SELECT DATE_FORMAT(ts, 'yyyy-MM-dd') as date_str, count(distinct user_id) as uv
FROM user_behavior
GROUP BY DATE_FORMAT(ts, 'yyyy-MM-dd');-- reading the changelog back again
SELECT * FROM day_uv;

版权声明:

本文为大数据技术与架构整理,原作者独家授权。未经原作者允许转载追究侵权责任。

编辑|冷眼丶

微信公众号|import_bigdata

欢迎点赞+收藏+转发朋友圈素质三连

文章不错?点个【在看】吧! ????

这篇关于Flink新增特性 | CDC(Change Data Capture) 原理和实践应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143013

相关文章

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

JDK9到JDK21中值得掌握的29个实用特性分享

《JDK9到JDK21中值得掌握的29个实用特性分享》Java的演进节奏从JDK9开始显著加快,每半年一个新版本的发布节奏为Java带来了大量的新特性,本文整理了29个JDK9到JDK21中值得掌握的... 目录JDK 9 模块化与API增强1. 集合工厂方法:一行代码创建不可变集合2. 私有接口方法:接口

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Vue 2 项目中配置 Tailwind CSS 和 Font Awesome 的最佳实践举例

《Vue2项目中配置TailwindCSS和FontAwesome的最佳实践举例》:本文主要介绍Vue2项目中配置TailwindCSS和FontAwesome的最... 目录vue 2 项目中配置 Tailwind css 和 Font Awesome 的最佳实践一、Tailwind CSS 配置1. 安

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.