【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2

2024-09-06 12:28

本文主要是介绍【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

与普通最小二乘法 (OLS) 的比较

应用理论:政治制度与GDP

拟合模型:贝叶斯方法

 多变量结果和相关性度量

结论


与普通最小二乘法 (OLS) 的比较

simple_ols_reg = sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_reg.intercept_, "Beta:", simple_ols_reg.coef_[0])
Intercept: 0.5677845035965572 Beta: 4.427701928515228

我们可以看到,由于处理变量的内生性,OLS 过高地估计了焦点参数的值,而 IV 回归则更接近真实值。正是这种偏误,工具变量设计的目的就是要缓解。

应用理论:政治制度与GDP

提醒一下,我们想要建模以下关系:

iv_df = cp.load_data("risk")
iv_df[["longname", "loggdp", "risk", "logmort0"]].head()

 

当我们观察到政治制度在这个增长系统中是内生的时候,问题就出现了。这意味着我们需要以某种方式控制测量误差和偏误,如果我们简单地拟合一个OLS模型的话。他们继续论证说,我们可以使用一个工具变量,这个变量仅通过政治制度的程度与GDP相关联,通过使用工具变量回归。他们最终建议使用欧洲定居者在那个时期的死亡率作为工具变量,因为较高的死亡率会导致较少的移民和对该地区的投资,这应该会减少在殖民地建立的政治制度。他们可以使用军事记录来收集这些数据。

我们可以手动估计两阶段最小二乘法 (2SLS) 的处理效应如下:

X = iv_df.risk.values.reshape(-1, 1)
Z = iv_df.logmort0.values.reshape(-1, 1)
t = iv_df.risk.values
y = iv_df.loggdp.valuessimple_ols_reg = sk_lin_reg().fit(X, y)
first_stage_reg = sk_lin_reg().fit(Z, t)
fitted_risk_values = first_stage_reg.predict(Z)second_stage_reg = sk_lin_reg().fit(X=fitted_risk_values.reshape(-1, 1), y=y)print("Simple OLS Parameters: Intercept and Beta Coeff",simple_ols_reg.intercept_,simple_ols_reg.coef_,
)
print("First Stage Parameters: Intercept and Beta Coeff",first_stage_reg.intercept_,first_stage_reg.coef_,
)
print("Second Stage Parameters Intercept and Beta Coeff",second_stage_reg.intercept_,second_stage_reg.coef_,
)
Simple OLS Parameters: Intercept and Beta Coeff 4.687414702305412 [0.51618698]
First Stage Parameters: Intercept and Beta Coeff 9.365894904697788 [-0.61328925]
Second Stage Parameters Intercept and Beta Coeff 1.9942956864448975 [0.92948966]

请注意,朴素的OLS估计值0.515与2SLS估计值0.92在处理效应上的显著差异。这与论文中报告的结果相符。

在这个笔记中,我们不会进一步讨论弱工具变量和强工具变量的问题,也不会讨论如何找到并测试工具变量的强度,但我们将会展示如何在贝叶斯设置下拟合这类模型。我们还将讨论贝叶斯方法如何在幕后将焦点(第二阶段)回归和工具(第一阶段)回归建模为具有明确相关性的多元随机变量。想法是将这两个结果一起建模,并带有明确的相关性。这种方法的好处是我们可以获得关于“工具”和结果之间关系的额外见解。

\begin{aligned}\begin{pmatrix}y\\t\end{pmatrix}&\sim\text{MultiNormal}(\mu,\Sigma)\\\mu&=\begin{pmatrix}\mu_y\\\mu_t\end{pmatrix}=\begin{pmatrix}\beta_{00}+\beta_{01}t\\\beta_{10}+\beta_{11}z\end{pmatrix}\end{aligned}

在这个实现的选择上,我们遵循了Juan Orduz博客的例子,该例子又借鉴了Jim Savage的工作。这样做有一个好处,那就是能够明确地表达出我们对处理变量和工具变量联合分布的兴趣。

拟合模型:贝叶斯方法

我们使用CausalPy来处理我们的数据,具体如下:

sample_kwargs = {"tune": 1000, "draws": 2000, "chains": 4, "cores": 4}
instruments_formula = "risk  ~ 1 + logmort0"
formula = "loggdp ~  1 + risk"
instruments_data = iv_df[["risk", "logmort0"]]
data = iv_df[["loggdp", "risk"]]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.plot_trace(iv.model.idata, var_names=["beta_z", "beta_t"]);

az.summary(iv.model.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

hdi_prob = 0.94
ax = az.plot_posterior(data=iv.model.idata,var_names=["beta_z"],hdi_prob=hdi_prob,
)ax[0].axvline(iv.ols_beta_params["Intercept"],label="Naive OLS Intercept \n Estimate",color="red",
)
ax[1].axvline(iv.ols_beta_params[iv.instrument_variable_name],label="Naive OLS Treatment \n Estimate",color="red",
)
ax[0].axvline(iv.ols_beta_second_params[0], label="MLE 2SLS Intercept \n Estimate", color="purple"
)
ax[1].axvline(iv.ols_beta_second_params[1], label="MLE 2SLS Treatment \n Estimate", color="purple"
)
ax[0].legend()
ax[1].legend();

 多变量结果和相关性度量

正如我们上面所述,贝叶斯方法的一个好处是我们可以直接测量工具变量和处理变量之间的双变量关系。我们可以看到(在二维空间中)估计的处理系数差异如何扭曲预期结果的表示。

az.summary(iv.model.idata, var_names=["chol_cov_corr"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

fig, axs = plt.subplots(1, 3, figsize=(20, 8))diffs = (iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name])- iv.ols_beta_params[iv.instrument_variable_name]
)
axs[0].hist(diffs.values.flatten(), bins=30, ec="black", color="blue", alpha=0.4)
axs[0].axvline(np.mean(diffs.values.flatten()),label="Expected Diff \n In Treatment Effect \n Estimate",color="magenta",
)
axs[0].set_xlabel("Difference")
axs[0].legend()intercepts = iv.model.idata["posterior"]["beta_z"].sel(covariates=["Intercept"])
betas = iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name]
)raw_df = pd.DataFrame(iv.X, columns=iv.labels)
x = np.linspace(0, 10, 10)
uncertainty = [intercepts.values.flatten() + betas.values.flatten() * i for i in x]
uncertainty = pd.DataFrame(uncertainty).Tols = [iv.ols_beta_params["Intercept"]+ iv.ols_beta_params[iv.instrument_variable_name] * ifor i in x
]custom_lines = [Line2D([0], [0], color="orange", lw=4),Line2D([0], [0], color="black", lw=4),
]uncertainty.sample(500).T.plot(legend=False, color="orange", alpha=0.4, ax=axs[1])
axs[1].plot(x, ols, color="black", label="OLS fit")
axs[1].set_title("OLS versus Instrumental Regression Fits", fontsize=20)
axs[1].legend(custom_lines, ["IV fits", "OlS fit"])
axs[1].set_xlabel("Treatment Scale/ Risk")
axs[1].set_ylabel("Outcome Scale/ Log GDP")axs[0].set_title("Posterior Differences between \n OLS and IV beta coefficients", fontsize=20
)corr = az.extract(data=iv.model.idata, var_names=["chol_cov_corr"])[0, 1, :]
axs[2].hist(corr, bins=30, ec="black", color="C2", label="correlation")
axs[2].set_xlabel("Correlation Measure")
axs[2].set_title("Correlation between \n Outcome and Treatment", fontsize=20);

结论

我们在这里看到的是,在估计不同政策干预的效果方面存在着非平凡的差异。工具变量回归是我们工具箱中的一种工具,可以帮助我们在潜在受上述基本DAG描述的混淆影响的情况下揭示政策的微妙效应。

和其他因果推断技术一样,很多因素都取决于初始DAG对你的情况有多合理,以及混淆的本质是否可以通过该技术解决。工具变量回归在计量经济学中很受欢迎并且是基础性的,主要是因为当我们希望考察政策干预效果时,潜在的混淆模式非常普遍。

这篇关于【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1141997

相关文章

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

基于Python+PyQt5打造一个跨平台Emoji表情管理神器

《基于Python+PyQt5打造一个跨平台Emoji表情管理神器》在当今数字化社交时代,Emoji已成为全球通用的视觉语言,本文主要为大家详细介绍了如何使用Python和PyQt5开发一个功能全面的... 目录概述功能特性1. 全量Emoji集合2. 智能搜索系统3. 高效交互设计4. 现代化UI展示效果

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

SpringCloud中的@FeignClient注解使用详解

《SpringCloud中的@FeignClient注解使用详解》在SpringCloud中使用Feign进行服务间的调用时,通常会使用@FeignClient注解来标记Feign客户端接口,这篇文章... 在Spring Cloud中使用Feign进行服务间的调用时,通常会使用@FeignClient注解