【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2

2024-09-06 12:28

本文主要是介绍【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

与普通最小二乘法 (OLS) 的比较

应用理论:政治制度与GDP

拟合模型:贝叶斯方法

 多变量结果和相关性度量

结论


与普通最小二乘法 (OLS) 的比较

simple_ols_reg = sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_reg.intercept_, "Beta:", simple_ols_reg.coef_[0])
Intercept: 0.5677845035965572 Beta: 4.427701928515228

我们可以看到,由于处理变量的内生性,OLS 过高地估计了焦点参数的值,而 IV 回归则更接近真实值。正是这种偏误,工具变量设计的目的就是要缓解。

应用理论:政治制度与GDP

提醒一下,我们想要建模以下关系:

iv_df = cp.load_data("risk")
iv_df[["longname", "loggdp", "risk", "logmort0"]].head()

 

当我们观察到政治制度在这个增长系统中是内生的时候,问题就出现了。这意味着我们需要以某种方式控制测量误差和偏误,如果我们简单地拟合一个OLS模型的话。他们继续论证说,我们可以使用一个工具变量,这个变量仅通过政治制度的程度与GDP相关联,通过使用工具变量回归。他们最终建议使用欧洲定居者在那个时期的死亡率作为工具变量,因为较高的死亡率会导致较少的移民和对该地区的投资,这应该会减少在殖民地建立的政治制度。他们可以使用军事记录来收集这些数据。

我们可以手动估计两阶段最小二乘法 (2SLS) 的处理效应如下:

X = iv_df.risk.values.reshape(-1, 1)
Z = iv_df.logmort0.values.reshape(-1, 1)
t = iv_df.risk.values
y = iv_df.loggdp.valuessimple_ols_reg = sk_lin_reg().fit(X, y)
first_stage_reg = sk_lin_reg().fit(Z, t)
fitted_risk_values = first_stage_reg.predict(Z)second_stage_reg = sk_lin_reg().fit(X=fitted_risk_values.reshape(-1, 1), y=y)print("Simple OLS Parameters: Intercept and Beta Coeff",simple_ols_reg.intercept_,simple_ols_reg.coef_,
)
print("First Stage Parameters: Intercept and Beta Coeff",first_stage_reg.intercept_,first_stage_reg.coef_,
)
print("Second Stage Parameters Intercept and Beta Coeff",second_stage_reg.intercept_,second_stage_reg.coef_,
)
Simple OLS Parameters: Intercept and Beta Coeff 4.687414702305412 [0.51618698]
First Stage Parameters: Intercept and Beta Coeff 9.365894904697788 [-0.61328925]
Second Stage Parameters Intercept and Beta Coeff 1.9942956864448975 [0.92948966]

请注意,朴素的OLS估计值0.515与2SLS估计值0.92在处理效应上的显著差异。这与论文中报告的结果相符。

在这个笔记中,我们不会进一步讨论弱工具变量和强工具变量的问题,也不会讨论如何找到并测试工具变量的强度,但我们将会展示如何在贝叶斯设置下拟合这类模型。我们还将讨论贝叶斯方法如何在幕后将焦点(第二阶段)回归和工具(第一阶段)回归建模为具有明确相关性的多元随机变量。想法是将这两个结果一起建模,并带有明确的相关性。这种方法的好处是我们可以获得关于“工具”和结果之间关系的额外见解。

\begin{aligned}\begin{pmatrix}y\\t\end{pmatrix}&\sim\text{MultiNormal}(\mu,\Sigma)\\\mu&=\begin{pmatrix}\mu_y\\\mu_t\end{pmatrix}=\begin{pmatrix}\beta_{00}+\beta_{01}t\\\beta_{10}+\beta_{11}z\end{pmatrix}\end{aligned}

在这个实现的选择上,我们遵循了Juan Orduz博客的例子,该例子又借鉴了Jim Savage的工作。这样做有一个好处,那就是能够明确地表达出我们对处理变量和工具变量联合分布的兴趣。

拟合模型:贝叶斯方法

我们使用CausalPy来处理我们的数据,具体如下:

sample_kwargs = {"tune": 1000, "draws": 2000, "chains": 4, "cores": 4}
instruments_formula = "risk  ~ 1 + logmort0"
formula = "loggdp ~  1 + risk"
instruments_data = iv_df[["risk", "logmort0"]]
data = iv_df[["loggdp", "risk"]]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.plot_trace(iv.model.idata, var_names=["beta_z", "beta_t"]);

az.summary(iv.model.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

hdi_prob = 0.94
ax = az.plot_posterior(data=iv.model.idata,var_names=["beta_z"],hdi_prob=hdi_prob,
)ax[0].axvline(iv.ols_beta_params["Intercept"],label="Naive OLS Intercept \n Estimate",color="red",
)
ax[1].axvline(iv.ols_beta_params[iv.instrument_variable_name],label="Naive OLS Treatment \n Estimate",color="red",
)
ax[0].axvline(iv.ols_beta_second_params[0], label="MLE 2SLS Intercept \n Estimate", color="purple"
)
ax[1].axvline(iv.ols_beta_second_params[1], label="MLE 2SLS Treatment \n Estimate", color="purple"
)
ax[0].legend()
ax[1].legend();

 多变量结果和相关性度量

正如我们上面所述,贝叶斯方法的一个好处是我们可以直接测量工具变量和处理变量之间的双变量关系。我们可以看到(在二维空间中)估计的处理系数差异如何扭曲预期结果的表示。

az.summary(iv.model.idata, var_names=["chol_cov_corr"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

fig, axs = plt.subplots(1, 3, figsize=(20, 8))diffs = (iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name])- iv.ols_beta_params[iv.instrument_variable_name]
)
axs[0].hist(diffs.values.flatten(), bins=30, ec="black", color="blue", alpha=0.4)
axs[0].axvline(np.mean(diffs.values.flatten()),label="Expected Diff \n In Treatment Effect \n Estimate",color="magenta",
)
axs[0].set_xlabel("Difference")
axs[0].legend()intercepts = iv.model.idata["posterior"]["beta_z"].sel(covariates=["Intercept"])
betas = iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name]
)raw_df = pd.DataFrame(iv.X, columns=iv.labels)
x = np.linspace(0, 10, 10)
uncertainty = [intercepts.values.flatten() + betas.values.flatten() * i for i in x]
uncertainty = pd.DataFrame(uncertainty).Tols = [iv.ols_beta_params["Intercept"]+ iv.ols_beta_params[iv.instrument_variable_name] * ifor i in x
]custom_lines = [Line2D([0], [0], color="orange", lw=4),Line2D([0], [0], color="black", lw=4),
]uncertainty.sample(500).T.plot(legend=False, color="orange", alpha=0.4, ax=axs[1])
axs[1].plot(x, ols, color="black", label="OLS fit")
axs[1].set_title("OLS versus Instrumental Regression Fits", fontsize=20)
axs[1].legend(custom_lines, ["IV fits", "OlS fit"])
axs[1].set_xlabel("Treatment Scale/ Risk")
axs[1].set_ylabel("Outcome Scale/ Log GDP")axs[0].set_title("Posterior Differences between \n OLS and IV beta coefficients", fontsize=20
)corr = az.extract(data=iv.model.idata, var_names=["chol_cov_corr"])[0, 1, :]
axs[2].hist(corr, bins=30, ec="black", color="C2", label="correlation")
axs[2].set_xlabel("Correlation Measure")
axs[2].set_title("Correlation between \n Outcome and Treatment", fontsize=20);

结论

我们在这里看到的是,在估计不同政策干预的效果方面存在着非平凡的差异。工具变量回归是我们工具箱中的一种工具,可以帮助我们在潜在受上述基本DAG描述的混淆影响的情况下揭示政策的微妙效应。

和其他因果推断技术一样,很多因素都取决于初始DAG对你的情况有多合理,以及混淆的本质是否可以通过该技术解决。工具变量回归在计量经济学中很受欢迎并且是基础性的,主要是因为当我们希望考察政策干预效果时,潜在的混淆模式非常普遍。

这篇关于【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141997

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处