【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2

2024-09-06 12:28

本文主要是介绍【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

与普通最小二乘法 (OLS) 的比较

应用理论:政治制度与GDP

拟合模型:贝叶斯方法

 多变量结果和相关性度量

结论


与普通最小二乘法 (OLS) 的比较

simple_ols_reg = sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_reg.intercept_, "Beta:", simple_ols_reg.coef_[0])
Intercept: 0.5677845035965572 Beta: 4.427701928515228

我们可以看到,由于处理变量的内生性,OLS 过高地估计了焦点参数的值,而 IV 回归则更接近真实值。正是这种偏误,工具变量设计的目的就是要缓解。

应用理论:政治制度与GDP

提醒一下,我们想要建模以下关系:

iv_df = cp.load_data("risk")
iv_df[["longname", "loggdp", "risk", "logmort0"]].head()

 

当我们观察到政治制度在这个增长系统中是内生的时候,问题就出现了。这意味着我们需要以某种方式控制测量误差和偏误,如果我们简单地拟合一个OLS模型的话。他们继续论证说,我们可以使用一个工具变量,这个变量仅通过政治制度的程度与GDP相关联,通过使用工具变量回归。他们最终建议使用欧洲定居者在那个时期的死亡率作为工具变量,因为较高的死亡率会导致较少的移民和对该地区的投资,这应该会减少在殖民地建立的政治制度。他们可以使用军事记录来收集这些数据。

我们可以手动估计两阶段最小二乘法 (2SLS) 的处理效应如下:

X = iv_df.risk.values.reshape(-1, 1)
Z = iv_df.logmort0.values.reshape(-1, 1)
t = iv_df.risk.values
y = iv_df.loggdp.valuessimple_ols_reg = sk_lin_reg().fit(X, y)
first_stage_reg = sk_lin_reg().fit(Z, t)
fitted_risk_values = first_stage_reg.predict(Z)second_stage_reg = sk_lin_reg().fit(X=fitted_risk_values.reshape(-1, 1), y=y)print("Simple OLS Parameters: Intercept and Beta Coeff",simple_ols_reg.intercept_,simple_ols_reg.coef_,
)
print("First Stage Parameters: Intercept and Beta Coeff",first_stage_reg.intercept_,first_stage_reg.coef_,
)
print("Second Stage Parameters Intercept and Beta Coeff",second_stage_reg.intercept_,second_stage_reg.coef_,
)
Simple OLS Parameters: Intercept and Beta Coeff 4.687414702305412 [0.51618698]
First Stage Parameters: Intercept and Beta Coeff 9.365894904697788 [-0.61328925]
Second Stage Parameters Intercept and Beta Coeff 1.9942956864448975 [0.92948966]

请注意,朴素的OLS估计值0.515与2SLS估计值0.92在处理效应上的显著差异。这与论文中报告的结果相符。

在这个笔记中,我们不会进一步讨论弱工具变量和强工具变量的问题,也不会讨论如何找到并测试工具变量的强度,但我们将会展示如何在贝叶斯设置下拟合这类模型。我们还将讨论贝叶斯方法如何在幕后将焦点(第二阶段)回归和工具(第一阶段)回归建模为具有明确相关性的多元随机变量。想法是将这两个结果一起建模,并带有明确的相关性。这种方法的好处是我们可以获得关于“工具”和结果之间关系的额外见解。

\begin{aligned}\begin{pmatrix}y\\t\end{pmatrix}&\sim\text{MultiNormal}(\mu,\Sigma)\\\mu&=\begin{pmatrix}\mu_y\\\mu_t\end{pmatrix}=\begin{pmatrix}\beta_{00}+\beta_{01}t\\\beta_{10}+\beta_{11}z\end{pmatrix}\end{aligned}

在这个实现的选择上,我们遵循了Juan Orduz博客的例子,该例子又借鉴了Jim Savage的工作。这样做有一个好处,那就是能够明确地表达出我们对处理变量和工具变量联合分布的兴趣。

拟合模型:贝叶斯方法

我们使用CausalPy来处理我们的数据,具体如下:

sample_kwargs = {"tune": 1000, "draws": 2000, "chains": 4, "cores": 4}
instruments_formula = "risk  ~ 1 + logmort0"
formula = "loggdp ~  1 + risk"
instruments_data = iv_df[["risk", "logmort0"]]
data = iv_df[["loggdp", "risk"]]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.plot_trace(iv.model.idata, var_names=["beta_z", "beta_t"]);

az.summary(iv.model.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

hdi_prob = 0.94
ax = az.plot_posterior(data=iv.model.idata,var_names=["beta_z"],hdi_prob=hdi_prob,
)ax[0].axvline(iv.ols_beta_params["Intercept"],label="Naive OLS Intercept \n Estimate",color="red",
)
ax[1].axvline(iv.ols_beta_params[iv.instrument_variable_name],label="Naive OLS Treatment \n Estimate",color="red",
)
ax[0].axvline(iv.ols_beta_second_params[0], label="MLE 2SLS Intercept \n Estimate", color="purple"
)
ax[1].axvline(iv.ols_beta_second_params[1], label="MLE 2SLS Treatment \n Estimate", color="purple"
)
ax[0].legend()
ax[1].legend();

 多变量结果和相关性度量

正如我们上面所述,贝叶斯方法的一个好处是我们可以直接测量工具变量和处理变量之间的双变量关系。我们可以看到(在二维空间中)估计的处理系数差异如何扭曲预期结果的表示。

az.summary(iv.model.idata, var_names=["chol_cov_corr"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

fig, axs = plt.subplots(1, 3, figsize=(20, 8))diffs = (iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name])- iv.ols_beta_params[iv.instrument_variable_name]
)
axs[0].hist(diffs.values.flatten(), bins=30, ec="black", color="blue", alpha=0.4)
axs[0].axvline(np.mean(diffs.values.flatten()),label="Expected Diff \n In Treatment Effect \n Estimate",color="magenta",
)
axs[0].set_xlabel("Difference")
axs[0].legend()intercepts = iv.model.idata["posterior"]["beta_z"].sel(covariates=["Intercept"])
betas = iv.model.idata["posterior"]["beta_z"].sel(covariates=[iv.instrument_variable_name]
)raw_df = pd.DataFrame(iv.X, columns=iv.labels)
x = np.linspace(0, 10, 10)
uncertainty = [intercepts.values.flatten() + betas.values.flatten() * i for i in x]
uncertainty = pd.DataFrame(uncertainty).Tols = [iv.ols_beta_params["Intercept"]+ iv.ols_beta_params[iv.instrument_variable_name] * ifor i in x
]custom_lines = [Line2D([0], [0], color="orange", lw=4),Line2D([0], [0], color="black", lw=4),
]uncertainty.sample(500).T.plot(legend=False, color="orange", alpha=0.4, ax=axs[1])
axs[1].plot(x, ols, color="black", label="OLS fit")
axs[1].set_title("OLS versus Instrumental Regression Fits", fontsize=20)
axs[1].legend(custom_lines, ["IV fits", "OlS fit"])
axs[1].set_xlabel("Treatment Scale/ Risk")
axs[1].set_ylabel("Outcome Scale/ Log GDP")axs[0].set_title("Posterior Differences between \n OLS and IV beta coefficients", fontsize=20
)corr = az.extract(data=iv.model.idata, var_names=["chol_cov_corr"])[0, 1, :]
axs[2].hist(corr, bins=30, ec="black", color="C2", label="correlation")
axs[2].set_xlabel("Correlation Measure")
axs[2].set_title("Correlation between \n Outcome and Treatment", fontsize=20);

结论

我们在这里看到的是,在估计不同政策干预的效果方面存在着非平凡的差异。工具变量回归是我们工具箱中的一种工具,可以帮助我们在潜在受上述基本DAG描述的混淆影响的情况下揭示政策的微妙效应。

和其他因果推断技术一样,很多因素都取决于初始DAG对你的情况有多合理,以及混淆的本质是否可以通过该技术解决。工具变量回归在计量经济学中很受欢迎并且是基础性的,主要是因为当我们希望考察政策干预效果时,潜在的混淆模式非常普遍。

这篇关于【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141997

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有