【Spark系列8】Spark Shuffle FetchFailedException报错解决方案

本文主要是介绍【Spark系列8】Spark Shuffle FetchFailedException报错解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


前半部分来源:http://blog.csdn.net/lsshlsw/article/details/51213610

后半部分是我的优化方案供大家参考。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SparkSQL shuffle操作带来的报错

org.apache.spark.shuffle.MetadataFetchFailedException: 
Missing an output location for shuffle 0
org.apache.spark.shuffle.FetchFailedException:
Failed to connect to hostname/192.168.xx.xxx:50268


RDD的shuffle操作带来的报错

WARN TaskSetManager: Lost task 17.1 in stage 4.1 (TID 1386, spark050013): java.io.FileNotFoundException: /data04/spark/tmp/blockmgr-817d372f-c359-4a00-96dd-8f6554aa19cd/2f/temp_shuffle_e22e013a-5392-4edb-9874-a196a1dad97c
FetchFailed(BlockManagerId(6083b277-119a-49e8-8a49-3539690a2a3f-S155, spark050013, 8533), shuffleId=1, mapId=143, reduceId=3, message=
org.apache.spark.shuffle.FetchFailedException: Error in opening FileSegmentManagedBuffer{file=/data04/spark/tmp/blockmgr-817d372f-c359-4a00-96dd-8f6554aa19cd/0e/shuffle_1_143_0.data, offset=997061, length=112503}

(笔者按:shuffle的原理可以参考我的另一篇总结:http://blog.csdn.net/zongzhiyuan/article/details/77676662) 


下面, 主要从shuffle的数据量和处理shuffle数据的分区数两个角度入手。

1. 减少shuffle数据

思考是否可以使用map side join或是broadcast join来规避shuffle的产生。

将不必要的数据在shuffle前进行过滤,比如原始数据有20个字段,只要选取需要的字段进行处理即可,将会减少一定的shuffle数据。

2.  SparkSQL和DataFrame的join,group by等操作(提供shuffle并发度)

通过spark.sql.shuffle.partitions控制分区数,默认为200,根据shuffle的量以及计算的复杂度提高这个值。

3. Rdd的join,groupBy,reduceByKey等操作

通过spark.default.parallelism控制shuffle read与reduce处理的分区数,默认为运行任务的core的总数(mesos细粒度模式为8个,local模式为本地的core总数),官方建议为设置成运行任务的core的2-3倍。

4. 提高executor的内存

通过spark.executor.memory适当提高executor的memory值

5. 是否存在数据倾斜的问题

空值是否已经过滤?某个key是否可以单独处理?考虑改变数据的分区规则。

以上内容来源于http://blog.csdn.net/lsshlsw/article/details/5121361


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

我遇到的场景:

大数据:17亿条日志

约束:某些字段为空值,不能丢弃日志;200个核,每个核20个G内存,已经无法增加资源。

问题排查:

1. 由于dataframe中取出的字段较多,某些字段是很长的字符串,导致数据量很大。

2. 针对3个字段使用reduceByKey进行多个统计聚合,最后需要转为dataframe进行原数据与统计数据的join,共3次join

3. 在3次join过程中,其中一次join有一个key会发生数据倾斜问题。

解决方案:

1. 将需要做join操作的字段单独提取出来,不需做join并且字段值比较大的字段单独处理,防止每次shuffle都产生无用的大量数据;

2. 在我的场景下,中间的统计结果主要用于后面的规则判断,以筛选出有问题的账号,因此,期间可以做预先过滤,即如果聚合统计的中间结果值本身小于n(后续规则的阈值一定会大于n),则直接丢弃该统计中间结果,不进入后面join的shuffle阶段,以进一步减少数据量;

3. 针对某个join的key出现数据倾斜的问题,将原始表分为3份,使用randomSpilt操作符,针对每个小部分原始表做3次join,最后将3个结果进行unionAll关联操作。


经过以上3步,我的问题已经得到解决。当然,解决方案根据场景和每个人的习惯不同会有很多。其他解决数据倾斜的方案可以参考我另外的总结:http://blog.csdn.net/zongzhiyuan/article/details/77676614



这篇关于【Spark系列8】Spark Shuffle FetchFailedException报错解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141880

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2