【Spark系列8】Spark Shuffle FetchFailedException报错解决方案

本文主要是介绍【Spark系列8】Spark Shuffle FetchFailedException报错解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


前半部分来源:http://blog.csdn.net/lsshlsw/article/details/51213610

后半部分是我的优化方案供大家参考。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SparkSQL shuffle操作带来的报错

org.apache.spark.shuffle.MetadataFetchFailedException: 
Missing an output location for shuffle 0
org.apache.spark.shuffle.FetchFailedException:
Failed to connect to hostname/192.168.xx.xxx:50268


RDD的shuffle操作带来的报错

WARN TaskSetManager: Lost task 17.1 in stage 4.1 (TID 1386, spark050013): java.io.FileNotFoundException: /data04/spark/tmp/blockmgr-817d372f-c359-4a00-96dd-8f6554aa19cd/2f/temp_shuffle_e22e013a-5392-4edb-9874-a196a1dad97c
FetchFailed(BlockManagerId(6083b277-119a-49e8-8a49-3539690a2a3f-S155, spark050013, 8533), shuffleId=1, mapId=143, reduceId=3, message=
org.apache.spark.shuffle.FetchFailedException: Error in opening FileSegmentManagedBuffer{file=/data04/spark/tmp/blockmgr-817d372f-c359-4a00-96dd-8f6554aa19cd/0e/shuffle_1_143_0.data, offset=997061, length=112503}

(笔者按:shuffle的原理可以参考我的另一篇总结:http://blog.csdn.net/zongzhiyuan/article/details/77676662) 


下面, 主要从shuffle的数据量和处理shuffle数据的分区数两个角度入手。

1. 减少shuffle数据

思考是否可以使用map side join或是broadcast join来规避shuffle的产生。

将不必要的数据在shuffle前进行过滤,比如原始数据有20个字段,只要选取需要的字段进行处理即可,将会减少一定的shuffle数据。

2.  SparkSQL和DataFrame的join,group by等操作(提供shuffle并发度)

通过spark.sql.shuffle.partitions控制分区数,默认为200,根据shuffle的量以及计算的复杂度提高这个值。

3. Rdd的join,groupBy,reduceByKey等操作

通过spark.default.parallelism控制shuffle read与reduce处理的分区数,默认为运行任务的core的总数(mesos细粒度模式为8个,local模式为本地的core总数),官方建议为设置成运行任务的core的2-3倍。

4. 提高executor的内存

通过spark.executor.memory适当提高executor的memory值

5. 是否存在数据倾斜的问题

空值是否已经过滤?某个key是否可以单独处理?考虑改变数据的分区规则。

以上内容来源于http://blog.csdn.net/lsshlsw/article/details/5121361


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

我遇到的场景:

大数据:17亿条日志

约束:某些字段为空值,不能丢弃日志;200个核,每个核20个G内存,已经无法增加资源。

问题排查:

1. 由于dataframe中取出的字段较多,某些字段是很长的字符串,导致数据量很大。

2. 针对3个字段使用reduceByKey进行多个统计聚合,最后需要转为dataframe进行原数据与统计数据的join,共3次join

3. 在3次join过程中,其中一次join有一个key会发生数据倾斜问题。

解决方案:

1. 将需要做join操作的字段单独提取出来,不需做join并且字段值比较大的字段单独处理,防止每次shuffle都产生无用的大量数据;

2. 在我的场景下,中间的统计结果主要用于后面的规则判断,以筛选出有问题的账号,因此,期间可以做预先过滤,即如果聚合统计的中间结果值本身小于n(后续规则的阈值一定会大于n),则直接丢弃该统计中间结果,不进入后面join的shuffle阶段,以进一步减少数据量;

3. 针对某个join的key出现数据倾斜的问题,将原始表分为3份,使用randomSpilt操作符,针对每个小部分原始表做3次join,最后将3个结果进行unionAll关联操作。


经过以上3步,我的问题已经得到解决。当然,解决方案根据场景和每个人的习惯不同会有很多。其他解决数据倾斜的方案可以参考我另外的总结:http://blog.csdn.net/zongzhiyuan/article/details/77676614



这篇关于【Spark系列8】Spark Shuffle FetchFailedException报错解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141880

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

kkFileView在线预览office的常见问题以及解决方案

《kkFileView在线预览office的常见问题以及解决方案》kkFileView在线预览Office常见问题包括base64编码配置、Office组件安装、乱码处理及水印添加,解决方案涉及版本适... 目录kkFileView在线预览office的常见问题1.base642.提示找不到OFFICE组件

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

WinForm跨线程访问UI及UI卡死的解决方案

《WinForm跨线程访问UI及UI卡死的解决方案》在WinForm开发过程中,跨线程访问UI控件和界面卡死是常见的技术难题,由于Windows窗体应用程序的UI控件默认只能在主线程(UI线程)上操作... 目录前言正文案例1:直接线程操作(无UI访问)案例2:BeginInvoke访问UI(错误用法)案例

Spring Security常见问题及解决方案

《SpringSecurity常见问题及解决方案》SpringSecurity是Spring生态的安全框架,提供认证、授权及攻击防护,支持JWT、OAuth2集成,适用于保护Spring应用,需配置... 目录Spring Security 简介Spring Security 核心概念1. ​Securit

MySQL逻辑删除与唯一索引冲突解决方案

《MySQL逻辑删除与唯一索引冲突解决方案》本文探讨MySQL逻辑删除与唯一索引冲突问题,提出四种解决方案:复合索引+时间戳、修改唯一字段、历史表、业务层校验,推荐方案1和方案3,适用于不同场景,感兴... 目录问题背景问题复现解决方案解决方案1.复合唯一索引 + 时间戳删除字段解决方案2:删除后修改唯一字

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操