word2vec 两个模型,两个加速方法 负采样加速Skip-gram模型 层序Softmax加速CBOW模型 item2vec 双塔模型 (DSSM双塔模型)

本文主要是介绍word2vec 两个模型,两个加速方法 负采样加速Skip-gram模型 层序Softmax加速CBOW模型 item2vec 双塔模型 (DSSM双塔模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

推荐领域(DSSM双塔模型):

https://www.cnblogs.com/wilson0068/p/12881258.html

 

word2vec 

word2vec笔记和实现

理解 Word2Vec 之 Skip-Gram 模型

上面这两个链接能让你彻底明白word2vec,不要搞什么公式,看完也是不知所云,也没说到本质.

目前用的比较多的都是Skip-gram模型

Google 于 2013 年开源推出的一个用于获取 word vector 的工具包(word2vec),并且简单的介绍了其中的两个训练模型(Skip-gram,CBOW),以及两种加速的方法(Hierarchical Softmax,Negative Sampling)

学习word2vec的skip-gram实现,除了skip-gram模型还有CBOW模型。
Skip-gram模式是根据中间词,预测前后词,CBOW模型刚好相反,根据前后的词,预测中间词。

那么什么是中间词呢?什么样的词才叫做前后词呢?

首先,我们需要定义一个窗口大小,在窗口里面的词,我们才有中间词和前后词的定义。一般这个窗口大小在5-10之间。
举个例子,我们设置窗口大小(window size)为2:

1|The|quick|brown|fox|jump|

那么,brown就是我们的中间词,Thequickfoxjump就是前后词。

我们知道,word2vec实际上就是一个神经网络(后面会解释),那么这样的数据,我们是以什么样的格式用来训练的呢?

可以看到,我们总是以中间词放在第一个位置,然后跟着我们的前后相邻词。可以看到,每一对词都是一个输入和一个输出组成的数据对(X,Y)。其中,X是feature,Y是label。

所以,我们训练模型之前,需要根据语料,整理出所有的像上面这样的输入数据用来训练

word2vec是一个神经网络

word2vec是一个简单的神经网络,有以下几个层组成:

  • 1个输入层

  • 1个隐藏层

  • 1个输出层

输入层输入的就是上面我们说的数据对的数字表示,输出到隐藏层。
隐藏层的神经网络单元的数量,其实就是我们所说的embedding size,只有为什么,我们后面简单计算一下就知道。需要注意的是,我们的隐藏层后面不需要使用激活函数
输出层,我们使用softmax操作,得到每一个预测结果的概率。

负采样

回到之前的问题:这些负样本是怎么影响损失的呢?

答案很简单:经过softmax之后,会得到正负样本的概率分布,而负样本对应的标签是0,所以计算出来的loss,在进行反向传播的时候,会尽量地使这些负样本的概率分布趋于0,相反的,会让正样本的概率分布趋于1

vocabulary的大小决定了我们的Skip-Gram神经网络将会拥有大规模的权重矩阵,所有的这些权重需要通过我们数以亿计的训练样本来进行调整,这是非常消耗计算资源的,并且实际中训练起来会非常慢。

负采样(negative sampling)解决了这个问题,它是用来提高训练速度并且改善所得到词向量的质量的一种方法。不同于原本每个训练样本更新所有的权重,负采样每次让一个训练样本仅仅更新一小部分的权重,这样就会降低梯度下降过程中的计算量。

当我们用训练样本 ( input word: "fox",output word: "quick") 来训练我们的神经网络时,“ fox”和“quick”都是经过one-hot编码的。如果我们的vocabulary大小为10000时,在输出层,我们期望对应“quick”单词的那个神经元结点输出1,其余9999个都应该输出0。在这里,这9999个我们期望输出为0的神经元结点所对应的单词我们称为“negative” word。

当使用负采样时,我们将随机选择一小部分的negative words(比如选5个negative words)来更新对应的权重。我们也会对我们的“positive” word进行权重更新(在我们上面的例子中,这个单词指的是”quick“)。

在论文中,作者指出指出对于小规模数据集,选择5-20个negative words会比较好,对于大规模数据集可以仅选择2-5个negative words。

回忆一下我们的隐层-输出层拥有300 x 10000的权重矩阵。如果使用了负采样的方法我们仅仅去更新我们的positive word-“quick”的和我们选择的其他5个negative words的结点对应的权重,共计6个输出神经元,相当于每次只更新[公式]个权重。对于3百万的权重来说,相当于只计算了0.06%的权重,这样计算效率就大幅度提高。

我们最终要的是隐层到输出层的权重矩阵作为每个词的embedding向量

item2vec

论文把Word2vec的Skipgram with Negative Sampling (SGNS)的算法思路迁移到基于物品的协同过滤(item-based CF)上,以物品的共现性作为自然语言中的上下文关系,构建神经网络学习出物品在隐空间的向量表示

 

MovieTaster-使用Item2Vec做电影推荐

https://blog.csdn.net/u011239443/article/details/82110770

MovieTaster-Open

https://github.com/lujiaying/MovieTaster-Open

目前的实现都是基于skip-gram,给定中心词计算上下文的概率,最后以每个词的中心词向量作为该词的向量表征

基于 Gensim 的 Word2Vec 实践(gensim自然语言python库)

https://www.cnblogs.com/pinard/p/7278324.html

用gensim学习word2vec

https://www.cnblogs.com/pinard/p/7278324.html

spark word2vec

spark实现:使用skip-gram模型,层序softmax加速训练

https://www.maiyewang.com/?p=14320

http://qiancy.com/2016/08/17/word2vec-hierarchical-softmax/

霍夫曼编码

https://zh.wikipedia.org/wiki/%E9%9C%8D%E5%A4%AB%E6%9B%BC%E7%BC%96%E7%A0%81

预处理:

如果是文本就分类

1:获取词典

2:子采样,去掉高频词。可以降低词典大小,以及提升低频次的表示精度

这篇关于word2vec 两个模型,两个加速方法 负采样加速Skip-gram模型 层序Softmax加速CBOW模型 item2vec 双塔模型 (DSSM双塔模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141190

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati