【大规模语言模型:从理论到实践】Transformer中PositionalEncoder详解

本文主要是介绍【大规模语言模型:从理论到实践】Transformer中PositionalEncoder详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

书籍链接:大规模语言模型:从理论到实践

第15页位置表示层代码详解
PositionalEncoder

1. 构造函数 __init__()

def __init__(self, d_model, max_seq_len=80):super().__init__()self.d_model = d_model  # 嵌入的维度(embedding dimension)
  • d_model: 表示输入词向量的维度。
  • max_seq_len: 表示句子的最大长度(最大序列长度)。
  • self.d_model: 保存词嵌入的维度。
创建 PE 矩阵
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):for i in range(0, d_model, 2):pe[pos, i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))pe[pos, i + 1] = math.cos(pos / (10000 ** ((2 * (i + 1))/d_model)))

这里,我们为所有可能的位置 pos 和维度 i 生成了位置编码矩阵 pe。编码规则是使用正弦和余弦函数来生成位置编码:

  • 对于每个位置 pos,在每个嵌入维度 i 上:

    • 奇数维度使用正弦函数 sin(pos / 10000^(2i/d_model))
    • 偶数维度使用余弦函数 cos(pos / 10000^(2i/d_model))

    这样做的好处是,正弦和余弦函数生成了一个平滑的周期性变化,使得位置编码具有一定的连续性和距离信息。

pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
  • pe.unsqueeze(0):将 pe 的第一个维度扩展为 1,这是为了便于后续将其与输入批次结合在一起。
  • register_buffer:将 pe 作为一个不可训练的参数(Tensor),并注册为模型的一部分,以确保其在模型的 .cuda().to(device) 等操作时也能够转移到对应设备上。

2. 前向传播 forward()

def forward(self, x):x = x * math.sqrt(self.d_model)  # 对输入乘以嵌入维度的平方根,使得它们的值更大一些
  • 这里的 x 是输入的词嵌入(word embeddings),即一个形状为 [batch_size, seq_len, d_model] 的张量。
  • x = x * math.sqrt(self.d_model):这一行操作是为了放大嵌入值,使得单词嵌入值的范围更加合适。
seq_len = x.size(1)  # 获取序列长度(句子长度)
x = x + Variable(self.pe[:, :seq_len], requires_grad=False).cuda()
  • seq_len = x.size(1):获取当前输入序列的长度。
  • self.pe[:, :seq_len]:根据当前序列长度,从 pe 中提取对应的位置信息(只取前 seq_len 个位置的编码)。
  • x + Variable(self.pe[:, :seq_len], requires_grad=False).cuda():将位置信息 pe 添加到输入词嵌入中。requires_grad=False 表示不对位置编码进行梯度更新。

3. 详细分析x + Variable(self.pe[:, :seq_len], requires_grad=False).cuda()

这行代码在位置编码器中的作用是将预计算好的位置编码矩阵 pe 加到输入的词嵌入矩阵 x 上。这是为了在词嵌入的基础上加入位置信息,使模型能够同时使用词汇语义和位置信息。我们分解这句话的各个部分:

x = x + Variable(self.pe[:, :seq_len], requires_grad=False).cuda()
1. self.pe[:, :seq_len]
  • self.pe 是我们在初始化时生成的位置编码矩阵,其形状为 [1, max_seq_len, d_model]

    • 这里的 1 是 batch 维度,用来保持与输入张量 x 形状的一致性。
    • max_seq_len 是句子可能的最大长度,表示可以编码的最大序列长度。
    • d_model 是词嵌入的维度。
  • self.pe[:, :seq_len] 表示从 pe 矩阵中取出前 seq_len 个位置的编码。这个操作的作用是根据输入句子的实际长度(seq_len)来选择对应长度的位置信息。例如,如果 seq_len 是 50,则取出 pe 中前 50 行的编码。

2. Variable(self.pe[:, :seq_len], requires_grad=False)
  • Variable 是用于包裹张量,使其在反向传播中能够区分哪些需要计算梯度,哪些不需要。
    • requires_grad=False 表示位置编码 pe 不参与梯度计算,位置编码是一个固定值,不会像模型权重那样进行训练或更新。

注意: 在较新的版本的 PyTorch 中,Variable 已经被整合到了 Tensor 中,不再需要显式使用 Variable。直接使用张量即可,它们本身已经具有 requires_grad 属性。

3. .cuda()
  • .cuda() 将张量移动到 GPU 上进行计算,确保模型的所有张量在同一个设备上。如果你使用的是 CPU,这一部分会报错或需要改成 .to(device),以便适应不同设备。
4. x + self.pe[:, :seq_len]
  • x 是输入的词嵌入矩阵,形状为 [batch_size, seq_len, d_model]
  • self.pe[:, :seq_len] 是位置编码矩阵,形状为 [1, seq_len, d_model],即与 x 的第二、第三维度一致。
  • 加法操作x + self.pe[:, :seq_len] 表示将对应位置的词嵌入和位置编码逐元素相加。这个加法是一个广播操作,即 self.pe 的第一个维度为 1,自动扩展到与 xbatch_size 相同大小,然后再进行相加操作。
5. self.pe[:, :seq_len]self.pe[:, :seq_len, :]相互替换

两者在功能上是等价的,但后者更明确地表达了正在获取 pe 矩阵的所有维度。这种做法在某些情况下可以提高代码的可读性,特别是当你的张量具有多个维度时。

这篇关于【大规模语言模型:从理论到实践】Transformer中PositionalEncoder详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141097

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash