【Pandas】数据分析预备

2024-09-06 05:12
文章标签 pandas 数据分析 预备

本文主要是介绍【Pandas】数据分析预备,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas

构建在NumPy之上,继承了NumPy高性能的数组计算功能,同时提供更多复杂精细的数据处理功能

  • 安装
    pip install pandas
  • 导入
import pandas as pd

Series

键值对列表

# 创建Series
s1 = pd.Series([5, 17, 3, 26, 31])
s1

0 5
1 17
2 3
3 26
4 31
dtype: int64

# 获得Series的元素和索引
s1.values

array([ 5, 17, 3, 26, 31])

s1.index

RangeIndex(start=0, stop=5, step=1)

# 索引和切片操作
print(s1[2])
print(s1[1:3])

3
1 17
2 3
dtype: int64

#既可以用标签索引也可以用位置索引
s1 = pd.Series([5, 17, 3, 26, 31], index=["a","d","b","c","e"])
print(s1)
print(s1["b"])
print(s1[1])

a 5
d 17
b 3
c 26
e 31
dtype: int64
3
17

# 标签索引切片包含结束值
s1["d":"c"]

d 17
b 3
c 26
dtype: int64

# 用索引获得任意元素
s1[["a","e","c"]]

a 5
e 31
c 26
dtype: int64

# loc:用标签索引 iloc:用位置索引
s2 = pd.Series([5,17,3,26,31], index=[1,3,5,7,9])
print(s2.loc[3])
print(s2.iloc[3])print(s2.loc[1:3]) #包括结束
print(s2.iloc[1:3]) #不包括结束位置

17
26
1 5
3 17
dtype: int64
3 17
5 3
dtype: int64

# 创建Series的另一种方式
s3 = pd.Series({"qc":4.1,"blb":2.2,"xhs":5.3,"td":3.7,"hg":6.8})
s3

qc 4.1
blb 2.2
xhs 5.3
td 3.7
hg 6.8
dtype: float64

# 查看标签是否存在
"qc" in s3
# 可以根据条件筛选
s3[(s3>5)&(s3<6)]
# 计算操作索引自动对齐,缺失值用0代替
s1.add(s2, fill_value=0)
# 统计信息
s1.describe()

count 5.000000
mean 16.400000
std 12.401613
min 3.000000
25% 5.000000
50% 17.000000
75% 26.000000
max 31.000000
dtype: float64

# 对元素分别操作
# 使用函数作为参数,不改变原始Series,返回新Series
# grades = scores.apply(get_grade_from_score)

Dataframe

数据表格,可以看成由Series组成的字典

  • 创建:值是Series或列表,列是各个Series对应的列名
df4 = pd.DataFrame({"学号":{"小明":"01","小红":"02","小杰":"03"}, "班级":{"小明":"二班","小红":"一班","小杰":"二班"},"成绩":{"小明":92,"小红":67,"小杰":70}})
df4

在这里插入图片描述

df4.index #获取索引
df4.columns #获取列名
df4.values #获取值(返回NumPy数组)
# 转置
df4.T
df4["班级"]

小明 二班
小红 一班
小杰 二班
Name: 班级, dtype: object

df4.班级  #列名也是dataFrame的属性,特殊符号不适用

小明 二班
小红 一班
小杰 二班
Name: 班级, dtype: object

df4[["学号", "成绩"]]
df4.loc["小红"]

学号 02
班级 一班
成绩 67
Name: 小红, dtype: object

df4.loc["小红","成绩"]

np.int64(67)

df4.loc[:,"成绩"]
df4[df4.成绩 > 67]
# 返回前5行  df4.head()
df4.head(2)# 对列赋值:更新或者增加列值
df4["成绩"] = pd.Series([88, 77, 66], index=["小明","小红","小杰"])
df4["性别"] = ["男", "女", "男"]
df4# 对行用loc
df4.loc["小虎"] = ["04", "三班", 99, "男"]
df4df4.drop(["小明", "小虎"]) # 删除行df4.drop("班级", axis=1) # 删除列 axis=1横向依次(判断)操作# df1.mean(axis=1) # 对行求平均值# df1.apply(函数)# 将函数用在每列
# df1.applymap(function) # 用在每个元素
# 原始df并不改变df4.describe() # 忽略非数字列

这篇关于【Pandas】数据分析预备的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1141091

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

pandas DataFrame keys的使用小结

《pandasDataFramekeys的使用小结》pandas.DataFrame.keys()方法返回DataFrame的列名,类似于字典的键,本文主要介绍了pandasDataFrameke... 目录Pandas2.2 DataFrameIndexing, iterationpandas.DataF

Pandas利用主表更新子表指定列小技巧

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同... 目录一、前言二、基本案例1. 创建主表数据2. 创建映射字典3. 创建子表数据4. 更新子表的 zb

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数