【数据应用案例】openFive dota5v5战胜人类

2024-09-06 04:08

本文主要是介绍【数据应用案例】openFive dota5v5战胜人类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@案例来源:@AI科技大本营 @AI科技评论 @论智

@案例地址:https://mp.weixin.qq.com/s/exvP4FucUfeOONsUkyTz7w;https://mp.weixin.qq.com/s/-llCCnFkDypVNiEh4yjNMg;https://www.jqr.com/article/000306

 

0. 背景:美国时间8月5日,open AI的5v5dotaAI “Open Five”2比1战胜了由主播、前职业选手组成的人类战队。

 

1. 目标:训练能在5v5比赛中打赢高水平人类选手的AI

 

2. 难点:

    1)强化学习能学习到“带来高反馈”的模式,但是游戏中影响胜利的因素很多,视野、团战、技能冷却中、分路、兵线等,人类也难以定义哪些因素对最终胜利起到决定性因素,为模型制定反馈规则较为复杂

    2)仅仅以最终胜负作为反馈的话,会带来反馈稀疏的问题

    3)5v5游戏中需要团队配合,包括核心辅助的角色划分,前中后期的资源分配等

    4)视野有限:必须在有限信息中进行决策

    5)高维、连续的观察空间和动作空间

    6)短期收益与长期收益的矛盾:打钱可以提高短期收益,但是队友推塔时自己还在打钱会降低推塔成功率,从而影响长期收益

 

3. 基本框架

    1)为每个英雄单独训练一个网络,网络为一个单层的、1024-unit 的 LSTM

    2)观察空间:通过dota的bot api获取实时的游戏信息,将世界视为 20000 个数字的列表

    3)动作空间:动作、动作在单元格网络中的X或Y坐标等,共8个值的列表

    4)训练:

        a. 使用“Rapid”通用 RL 训练系统,训练系统分为 rollout workers,运行游戏副本,智能体(agent),用来收集经验,优化器节点(optimizer nodes)执行跨 GPU 组的同步梯度下降。每次训练还包括分别对训练机器人以及样本机器人进行评估的组件,以及监视软件,比如 TensorBoard,Sentry 以及 Grafana。

        b. 使用128,000个preemptible CPU,256个P100 GPU。一天的训练量相当于人类不间断玩了180年游戏

        c. 为了避免“策略崩溃”,智能体在训练的时候,80% 的游戏都是自我对抗, 另外 20% 则是与过去的自己进行对抗

        d. 为了强制探索动作空间,在训练中对智能体的血量、移速、初始等级随机化,强迫其进行探索

 

4. trick

    1)增加表现行为(总财产、补刀数、击杀数、助攻数、死亡数)作为反馈指标

    2)引入人类对英雄的定位信息(如核心、辅助等):鼓励AI将表现指标“达到”人类的平均水平,而不是越大越好。如冰女是辅助英雄,补刀数低,助攻数高,当AI表现越接近人类在相同时间的平均值时,获得的奖励越高

    3)团队精神:设置一个“团队精神”超参数,平衡AI个体收益和团队收益之间的奖励权重

    4)探索与攻击肉山:在Open Five刚发布的时候,AI是不会主动去打肉山。但是在本次比赛中,AI频繁探索肉山视野(避免对手打肉山),并有了打肉山的行为。训练技巧是在训练中给肉山随机血量,那么AI探索肉山并遇见肉山随机到低血量的时候,很容易低成本获得高奖励,从而鼓励AI开始关注肜

    5)眼:训练AI买眼与插眼控制视野太过复杂(眼在游戏中是有限的稀缺资源,插眼需要对游戏未来数分钟局势的判断,同时插眼需要付出较高的时间成本和生命危险,因此计算插眼路线也十分困难),所以目前直接通过脚本的形式写入AI,让AI有眼的时候就买。眼会占格子,当AI格子满的时候,就会插眼(所以比赛中AI的眼位比较奇特)

 

 

这篇关于【数据应用案例】openFive dota5v5战胜人类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140959

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库