【数据应用技巧】NLP领域的预训练之风

2024-09-06 04:08

本文主要是介绍【数据应用技巧】NLP领域的预训练之风,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例来源:@AI科技评论 @集智翻译组 @人工智能LeadAI

案例地址:https://mp.weixin.qq.com/s/NCLkZqdmqY9lm5BhyEcLXQ;https://www.sohu.com/a/233269391_395209;https://arxiv.org/pdf/1801.06146.pdf;http://wemedia.ifeng.com/64207141/wemedia.shtml;https://baijiahao.baidu.com/s?id=1607601183904724013&wfr=spider&for=pc;http://www.igeek.com.cn/article-1176781-2.html

 

0. 背景:ImageNet带来了数据预训练的风,通过在ImageNet数据集上训练得到的网络权重,可以迁移学习到较少标注集较高标注成本的领域。这股思想也进入了NLP领域,本文介绍几种预训练方法。

目前NLP领域的预训练方法有:

    1)word2vec

    2)ULMFit

    3)ELMo

    4)Open AI Transformer

    对标ImageNet,目前NLP领域的主流标注数据集有:

    1)斯坦福问答数据集(SQuAD):10万多对问答对

    2)斯坦福自然推理语料库(SNLI):57万对英语句子对

    3)WMT:4千万对 英语-法语 翻译句子对

    4)WikiTest-2:维基百科文本

    这些语料库都有一定的缺陷(如人工标注员倾向于通过否定的方式创造新的句子对),不一定同ImageNet一样,可以表征所有自然语言处理的问题空间,削弱了使用这些语料库提取特征的泛化能力

 

1. word2vec

    1)预训练获得词嵌入,然后将词嵌入作为特征输出神经网络的第一层。是一种浅层网络的特征表示方法,类比于cv中对浅层神经元对物体边缘的表示

 

2. ULMFit(Universal Language Model Fine-tuning)

    1)LM pre-training:在大型语料库上训练word的表达

    2)LM fine-tuning:在特定语料上训练word在深层网络中的表达

    3)Classifier fine-tuning:上层分类器

 

3. ELMo(Embeddings from Language Models,深层语境化词表征)

    1)特点:

        a. 输入是字符而不是词,因此可以利用子字词单元来计算有意义的表征,即使对于词典外的词也是如此

        b. 词向量不是一成不变的,而是根据上下文不同而变化。如“我买了富士康生产的苹果”与“我吃了一个富士苹果”中“苹果”并不是一个事物

    2)方法:首先在大文本语料库上预训练了一个深度双向语言模型(biLM),然后把根据它的内部状态学到的函数作为词向量。语言模型的不同层对单词上的不同类型信息进行编码(例如,词语标注由biLSTM的较低层完成预测,而词义消歧在较高层中更好地编码)。 把所有层连接起来,可以自由组合各种文字表征,以提高下游任务的性能表现

 

4. Open AI Transformer

    1)在大规模数据集上用无监督的方式训练一个transformer模型(参:https://blog.csdn.net/allwefantasy/article/details/50663524)

    2)在小规模有监督数据集上进行微调

 

5. NLP预训练展望:

    1)可以用主流语言语料库做预训练,迁移学习到标注资源特别匮乏的小语种

    2)文本中的常识性信息,有一些不能从文本上下文中获得,而是要结合外部额外信息,这也是进一步优化预训练能力的点

 

这篇关于【数据应用技巧】NLP领域的预训练之风的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140956

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em