【数据应用技巧】NLP领域的预训练之风

2024-09-06 04:08

本文主要是介绍【数据应用技巧】NLP领域的预训练之风,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例来源:@AI科技评论 @集智翻译组 @人工智能LeadAI

案例地址:https://mp.weixin.qq.com/s/NCLkZqdmqY9lm5BhyEcLXQ;https://www.sohu.com/a/233269391_395209;https://arxiv.org/pdf/1801.06146.pdf;http://wemedia.ifeng.com/64207141/wemedia.shtml;https://baijiahao.baidu.com/s?id=1607601183904724013&wfr=spider&for=pc;http://www.igeek.com.cn/article-1176781-2.html

 

0. 背景:ImageNet带来了数据预训练的风,通过在ImageNet数据集上训练得到的网络权重,可以迁移学习到较少标注集较高标注成本的领域。这股思想也进入了NLP领域,本文介绍几种预训练方法。

目前NLP领域的预训练方法有:

    1)word2vec

    2)ULMFit

    3)ELMo

    4)Open AI Transformer

    对标ImageNet,目前NLP领域的主流标注数据集有:

    1)斯坦福问答数据集(SQuAD):10万多对问答对

    2)斯坦福自然推理语料库(SNLI):57万对英语句子对

    3)WMT:4千万对 英语-法语 翻译句子对

    4)WikiTest-2:维基百科文本

    这些语料库都有一定的缺陷(如人工标注员倾向于通过否定的方式创造新的句子对),不一定同ImageNet一样,可以表征所有自然语言处理的问题空间,削弱了使用这些语料库提取特征的泛化能力

 

1. word2vec

    1)预训练获得词嵌入,然后将词嵌入作为特征输出神经网络的第一层。是一种浅层网络的特征表示方法,类比于cv中对浅层神经元对物体边缘的表示

 

2. ULMFit(Universal Language Model Fine-tuning)

    1)LM pre-training:在大型语料库上训练word的表达

    2)LM fine-tuning:在特定语料上训练word在深层网络中的表达

    3)Classifier fine-tuning:上层分类器

 

3. ELMo(Embeddings from Language Models,深层语境化词表征)

    1)特点:

        a. 输入是字符而不是词,因此可以利用子字词单元来计算有意义的表征,即使对于词典外的词也是如此

        b. 词向量不是一成不变的,而是根据上下文不同而变化。如“我买了富士康生产的苹果”与“我吃了一个富士苹果”中“苹果”并不是一个事物

    2)方法:首先在大文本语料库上预训练了一个深度双向语言模型(biLM),然后把根据它的内部状态学到的函数作为词向量。语言模型的不同层对单词上的不同类型信息进行编码(例如,词语标注由biLSTM的较低层完成预测,而词义消歧在较高层中更好地编码)。 把所有层连接起来,可以自由组合各种文字表征,以提高下游任务的性能表现

 

4. Open AI Transformer

    1)在大规模数据集上用无监督的方式训练一个transformer模型(参:https://blog.csdn.net/allwefantasy/article/details/50663524)

    2)在小规模有监督数据集上进行微调

 

5. NLP预训练展望:

    1)可以用主流语言语料库做预训练,迁移学习到标注资源特别匮乏的小语种

    2)文本中的常识性信息,有一些不能从文本上下文中获得,而是要结合外部额外信息,这也是进一步优化预训练能力的点

 

这篇关于【数据应用技巧】NLP领域的预训练之风的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140956

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技