【Python时序预测系列】高创新模型:基于xlstm模型实现单变量时间序列预测(案例+源码)

本文主要是介绍【Python时序预测系列】高创新模型:基于xlstm模型实现单变量时间序列预测(案例+源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是我的第351篇原创文章。

一、引言

LSTM在1990年代被提出,用以解决循环神经网络(RNN)的梯度消失问题。LSTM在多种领域取得了成功,但随着Transformer技术的出现,其地位受到了挑战。如果将LSTM扩展到数十亿参数,并利用现代大型语言模型(LLM)的技术,同时克服LSTM的已知限制,我们能在语言建模上走多远?

论文介绍了两种新的LSTM变体:sLSTM(具有标量记忆和更新)和mLSTM(具有矩阵记忆和协方差更新规则),并将它们集成到残差块中,形成xLSTM架构。

sLSTM:引入了指数门控和新的存储混合技术,允许LSTM修订其存储决策。

mLSTM:将LSTM的记忆单元从标量扩展到矩阵,提高了存储容量,并引入了协方差更新规则,使得mLSTM可以完全并行化。

xLSTM架构:通过将sLSTM和mLSTM集成到残差块中,构建了xLSTM架构。

二、实现过程

2.1 加载数据

data = pd.read_csv('data.csv', usecols=[1], engine='python')
dataset = data.values.astype('float32')

2.2 归一化处理

scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)

2.3 划分数据集

train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]trainX, trainY = create_dataset(train, seq_len)
testX, testY = create_dataset(test, seq_len)# Create data loaders
train_dataset = TensorDataset(trainX, trainY)
test_dataset = TensorDataset(testX, testY)train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

2.4 构建模型

models = {"xLSTM": xLSTM(input_size, head_size, num_heads, batch_first=True, layers='msm'),"LSTM": nn.LSTM(input_size, head_size, batch_first=True, proj_size=input_size),"sLSTM": sLSTM(input_size, head_size, num_heads, batch_first=True),"mLSTM": mLSTM(input_size, head_size, num_heads, batch_first=True)
}

2.5 训练模型

定义训练函数:

def train_model(model, model_name, epochs=20, learning_rate=0.01):criterion = nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)train_losses = []for epoch in tqdm(range(epochs), desc=f'Training {model_name}'):model.train()epoch_loss = 0for i, (inputs, targets) in enumerate(train_loader):optimizer.zero_grad()outputs, _ = model(inputs)outputs = outputs[:, -1, :]loss = criterion(outputs, targets)loss.backward()optimizer.step()epoch_loss += loss.item()train_losses.append(epoch_loss / len(train_loader))plt.plot(train_losses, label=model_name)plt.title(f'Training Loss for {model_name}')plt.xlabel('Epochs')plt.ylabel('MSE Loss')plt.legend()plt.show()return model, train_losses

开始训练:

trained_models = {}
all_train_losses = {}
for model_name, model in models.items():trained_models[model_name], all_train_losses[model_name] = train_model(model, model_name)

绘制所有模型的损失函数曲线:

plt.figure()
for model_name, train_losses in all_train_losses.items():plt.plot(train_losses, label=model_name)# Plot all model losses compared
plt.title('Training Losses for all Models')
plt.xlabel('Epochs')
plt.ylabel('MSE Loss')
plt.legend()
plt.show()

图片

2.6 预测评估

预测:

def evaluate_model(model, data_loader):model.eval()predictions = []with torch.no_grad():for inputs, _ in data_loader:outputs, _ = model(inputs)predictions.extend(outputs[:, -1, :].numpy())return predictionstest_predictions = {}
for model_name, model in trained_models.items():test_predictions[model_name] = evaluate_model(model, test_loader)

预测结果可视化:

# Plot predictions for each model
for model_name, preds in test_predictions.items():# Inverse transform the predictions and actual valuespreds = scaler.inverse_transform(np.array(preds).reshape(-1, 1))actual = scaler.inverse_transform(testY.numpy().reshape(-1, 1))plt.figure()plt.plot(actual, label='Actual')plt.plot(preds, label=model_name + ' Predictions')plt.title(f'{model_name} Predictions vs Actual')plt.legend()plt.show()# Plot all model predictions compared
plt.figure()
plt.plot(actual, label='Actual')
for model_name, preds in test_predictions.items():# Inverse transform the predictionspreds = scaler.inverse_transform(np.array(preds).reshape(-1, 1))plt.plot(preds, label=model_name + ' Predictions')plt.title('All Models Predictions vs Actual')
plt.legend()
plt.show()

结果:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。​​​​​​​

这篇关于【Python时序预测系列】高创新模型:基于xlstm模型实现单变量时间序列预测(案例+源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140859

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group