分治算法与凸包问题

2024-09-06 01:36
文章标签 算法 问题 分治 凸包

本文主要是介绍分治算法与凸包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是凸包问题?

凸包问题是计算几何中的经典问题。给定二维平面上的点集,凸包是一个最小的凸多边形,它包含了点集中所有的点。你可以把凸包想象成一根松紧带将所有点紧紧包裹住的样子,凸包的边缘仅沿着最外面的点延伸。

2. 分治法简介

分治算法是解决复杂问题的强大策略,它的思想是将问题分解为多个子问题,分别解决这些子问题后再合并得到最终解。凸包问题可以通过分治算法高效地解决,时间复杂度可以达到 (O(n \log n))。具体的算法可以分为以下三个步骤:

  1. 分解(Divide):将点集按 x 坐标排序,并递归地将点集分为左右两部分。
  2. 求解(Conquer):分别对左右两部分的点集递归地求解凸包。
  3. 合并(Combine):通过找到上下切线,将左右两部分的凸包合并,形成完整的凸包。
3. 分治法求解凸包问题的详细步骤
3.1 分割与递归求解

首先,将点集按照 x 坐标进行排序,并将其分为左右两部分。分割后的每部分都可以递归地调用相同的凸包算法进行求解。如果点集的数量较少(例如2个点),可以直接返回这些点作为凸包的边界。

3.2 合并凸包

合并的过程是分治算法中最复杂但也是最关键的部分。合并两个凸包时,需要找到两个凸包之间的上切线下切线

  • 上切线是连接两个凸包的最高的直线段,它连接左侧凸包的一个点和右侧凸包的一个点,并且没有其他点在这条直线的上方。
  • 下切线是连接两个凸包的最低的直线段,它同样连接左侧和右侧凸包,并且没有其他点在这条直线的下方。

通过找到上切线和下切线,我们可以将左右两部分凸包的边界线连接起来,从而形成整个点集的凸包。

3.3 寻找上切线和下切线

寻找上切线的过程

  1. 从左侧凸包最右边的点和右侧凸包最左边的点开始。
  2. 通过“叉乘”判断点的相对位置:
    • 如果右侧凸包中有一个点相对于当前直线在更上方,则顺时针移动右侧凸包的点。
    • 如果左侧凸包中的点相对于当前直线在更上方,则逆时针移动左侧凸包的点。
  3. 当两个点都不再移动时,找到的就是上切线。

寻找下切线的过程与上切线类似,但我们需要找到最低的直线段,因此判断方向相反。

3.4 叉乘的作用

在寻找上切线和下切线的过程中,叉乘用于判断三点的相对位置。叉乘结果的几何意义如下:

  • 结果为正:表示第三个点在当前直线的左侧(逆时针方向)。
  • 结果为负:表示第三个点在当前直线的右侧(顺时针方向)。
  • 结果为零:表示三点共线。

通过叉乘的几何性质,我们可以高效地找到上下切线,完成凸包的合并。

4. 代码实现

接下来是分治法求解凸包问题的完整Python代码实现:

import matplotlib.pyplot as plt# 定义点类
class Point:def __init__(self, x, y):self.x = xself.y = ydef __repr__(self):return f"({self.x}, {self.y})"# 计算叉乘,用于判断点的相对方向
def cross(o, a, b):return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x)# 分治法求解凸包
def convex_hull(points):points = sorted(points, key=lambda p: (p.x, p.y))  # 按 x 坐标排序# 递归划分并合并def divide_and_conquer(points):if len(points) <= 2:return pointsmid = len(points) // 2left_hull = divide_and_conquer(points[:mid])right_hull = divide_and_conquer(points[mid:])return merge_hulls(left_hull, right_hull)# 合并两个凸包def merge_hulls(left_hull, right_hull):# 寻找上切线def find_upper_tangent(left_hull, right_hull):i, j = len(left_hull) - 1, 0while True:moved = Falsewhile cross(left_hull[i], right_hull[j], right_hull[(j + 1) % len(right_hull)]) > 0:j = (j + 1) % len(right_hull)moved = Truewhile cross(right_hull[j], left_hull[i], left_hull[(i - 1) % len(left_hull)]) < 0:i = (i - 1) % len(left_hull)moved = Trueif not moved:breakreturn i, j# 寻找下切线def find_lower_tangent(left_hull, right_hull):i, j = len(left_hull) - 1, 0while True:moved = Falsewhile cross(left_hull[i], right_hull[j], right_hull[(j - 1) % len(right_hull)]) < 0:j = (j - 1) % len(right_hull)moved = Truewhile cross(right_hull[j], left_hull[i], left_hull[(i + 1) % len(left_hull)]) > 0:i = (i + 1) % len(left_hull)moved = Trueif not moved:breakreturn i, j# 找到上下切线upper_left, upper_right = find_upper_tangent(left_hull, right_hull)lower_left, lower_right = find_lower_tangent(left_hull, right_hull)# 合并凸包new_hull = []new_hull.append(left_hull[upper_left])new_hull.append(right_hull[upper_right])i = (upper_right + 1) % len(right_hull)while i != lower_right:new_hull.append(right_hull[i])i = (i + 1) % len(right_hull)new_hull.append(right_hull[lower_right])new_hull.append(left_hull[lower_left])i = (lower_left + 1) % len(left_hull)while i != upper_left:new_hull.append(left_hull[i])i = (i + 1) % len(left_hull)return new_hullreturn divide_and_conquer(points)# 测试数据
points = [Point(0, 0), Point(1, 1), Point(2, 0), Point(0, 2), Point(2, 2), Point(1.5, 1.5)]
hull = convex_hull(points)
print(hull)

结果展示:
在这里插入图片描述

5. 总结

通过分治法解决凸包问题,不仅能够大幅优化计算效率,还能让人更好地理解几何性质。使用分治法,我们将点集分为左右两部分,分别求解凸包,再通过上下切线合并两个凸包,最终得到完整的凸包。这种方法体现了分治法的精髓,是计算几何中的经典算法之一。

这篇关于分治算法与凸包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140626

相关文章

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决