分治算法与凸包问题

2024-09-06 01:36
文章标签 算法 问题 分治 凸包

本文主要是介绍分治算法与凸包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是凸包问题?

凸包问题是计算几何中的经典问题。给定二维平面上的点集,凸包是一个最小的凸多边形,它包含了点集中所有的点。你可以把凸包想象成一根松紧带将所有点紧紧包裹住的样子,凸包的边缘仅沿着最外面的点延伸。

2. 分治法简介

分治算法是解决复杂问题的强大策略,它的思想是将问题分解为多个子问题,分别解决这些子问题后再合并得到最终解。凸包问题可以通过分治算法高效地解决,时间复杂度可以达到 (O(n \log n))。具体的算法可以分为以下三个步骤:

  1. 分解(Divide):将点集按 x 坐标排序,并递归地将点集分为左右两部分。
  2. 求解(Conquer):分别对左右两部分的点集递归地求解凸包。
  3. 合并(Combine):通过找到上下切线,将左右两部分的凸包合并,形成完整的凸包。
3. 分治法求解凸包问题的详细步骤
3.1 分割与递归求解

首先,将点集按照 x 坐标进行排序,并将其分为左右两部分。分割后的每部分都可以递归地调用相同的凸包算法进行求解。如果点集的数量较少(例如2个点),可以直接返回这些点作为凸包的边界。

3.2 合并凸包

合并的过程是分治算法中最复杂但也是最关键的部分。合并两个凸包时,需要找到两个凸包之间的上切线下切线

  • 上切线是连接两个凸包的最高的直线段,它连接左侧凸包的一个点和右侧凸包的一个点,并且没有其他点在这条直线的上方。
  • 下切线是连接两个凸包的最低的直线段,它同样连接左侧和右侧凸包,并且没有其他点在这条直线的下方。

通过找到上切线和下切线,我们可以将左右两部分凸包的边界线连接起来,从而形成整个点集的凸包。

3.3 寻找上切线和下切线

寻找上切线的过程

  1. 从左侧凸包最右边的点和右侧凸包最左边的点开始。
  2. 通过“叉乘”判断点的相对位置:
    • 如果右侧凸包中有一个点相对于当前直线在更上方,则顺时针移动右侧凸包的点。
    • 如果左侧凸包中的点相对于当前直线在更上方,则逆时针移动左侧凸包的点。
  3. 当两个点都不再移动时,找到的就是上切线。

寻找下切线的过程与上切线类似,但我们需要找到最低的直线段,因此判断方向相反。

3.4 叉乘的作用

在寻找上切线和下切线的过程中,叉乘用于判断三点的相对位置。叉乘结果的几何意义如下:

  • 结果为正:表示第三个点在当前直线的左侧(逆时针方向)。
  • 结果为负:表示第三个点在当前直线的右侧(顺时针方向)。
  • 结果为零:表示三点共线。

通过叉乘的几何性质,我们可以高效地找到上下切线,完成凸包的合并。

4. 代码实现

接下来是分治法求解凸包问题的完整Python代码实现:

import matplotlib.pyplot as plt# 定义点类
class Point:def __init__(self, x, y):self.x = xself.y = ydef __repr__(self):return f"({self.x}, {self.y})"# 计算叉乘,用于判断点的相对方向
def cross(o, a, b):return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x)# 分治法求解凸包
def convex_hull(points):points = sorted(points, key=lambda p: (p.x, p.y))  # 按 x 坐标排序# 递归划分并合并def divide_and_conquer(points):if len(points) <= 2:return pointsmid = len(points) // 2left_hull = divide_and_conquer(points[:mid])right_hull = divide_and_conquer(points[mid:])return merge_hulls(left_hull, right_hull)# 合并两个凸包def merge_hulls(left_hull, right_hull):# 寻找上切线def find_upper_tangent(left_hull, right_hull):i, j = len(left_hull) - 1, 0while True:moved = Falsewhile cross(left_hull[i], right_hull[j], right_hull[(j + 1) % len(right_hull)]) > 0:j = (j + 1) % len(right_hull)moved = Truewhile cross(right_hull[j], left_hull[i], left_hull[(i - 1) % len(left_hull)]) < 0:i = (i - 1) % len(left_hull)moved = Trueif not moved:breakreturn i, j# 寻找下切线def find_lower_tangent(left_hull, right_hull):i, j = len(left_hull) - 1, 0while True:moved = Falsewhile cross(left_hull[i], right_hull[j], right_hull[(j - 1) % len(right_hull)]) < 0:j = (j - 1) % len(right_hull)moved = Truewhile cross(right_hull[j], left_hull[i], left_hull[(i + 1) % len(left_hull)]) > 0:i = (i + 1) % len(left_hull)moved = Trueif not moved:breakreturn i, j# 找到上下切线upper_left, upper_right = find_upper_tangent(left_hull, right_hull)lower_left, lower_right = find_lower_tangent(left_hull, right_hull)# 合并凸包new_hull = []new_hull.append(left_hull[upper_left])new_hull.append(right_hull[upper_right])i = (upper_right + 1) % len(right_hull)while i != lower_right:new_hull.append(right_hull[i])i = (i + 1) % len(right_hull)new_hull.append(right_hull[lower_right])new_hull.append(left_hull[lower_left])i = (lower_left + 1) % len(left_hull)while i != upper_left:new_hull.append(left_hull[i])i = (i + 1) % len(left_hull)return new_hullreturn divide_and_conquer(points)# 测试数据
points = [Point(0, 0), Point(1, 1), Point(2, 0), Point(0, 2), Point(2, 2), Point(1.5, 1.5)]
hull = convex_hull(points)
print(hull)

结果展示:
在这里插入图片描述

5. 总结

通过分治法解决凸包问题,不仅能够大幅优化计算效率,还能让人更好地理解几何性质。使用分治法,我们将点集分为左右两部分,分别求解凸包,再通过上下切线合并两个凸包,最终得到完整的凸包。这种方法体现了分治法的精髓,是计算几何中的经典算法之一。

这篇关于分治算法与凸包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140626

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.