分治算法与凸包问题

2024-09-06 01:36
文章标签 算法 问题 分治 凸包

本文主要是介绍分治算法与凸包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是凸包问题?

凸包问题是计算几何中的经典问题。给定二维平面上的点集,凸包是一个最小的凸多边形,它包含了点集中所有的点。你可以把凸包想象成一根松紧带将所有点紧紧包裹住的样子,凸包的边缘仅沿着最外面的点延伸。

2. 分治法简介

分治算法是解决复杂问题的强大策略,它的思想是将问题分解为多个子问题,分别解决这些子问题后再合并得到最终解。凸包问题可以通过分治算法高效地解决,时间复杂度可以达到 (O(n \log n))。具体的算法可以分为以下三个步骤:

  1. 分解(Divide):将点集按 x 坐标排序,并递归地将点集分为左右两部分。
  2. 求解(Conquer):分别对左右两部分的点集递归地求解凸包。
  3. 合并(Combine):通过找到上下切线,将左右两部分的凸包合并,形成完整的凸包。
3. 分治法求解凸包问题的详细步骤
3.1 分割与递归求解

首先,将点集按照 x 坐标进行排序,并将其分为左右两部分。分割后的每部分都可以递归地调用相同的凸包算法进行求解。如果点集的数量较少(例如2个点),可以直接返回这些点作为凸包的边界。

3.2 合并凸包

合并的过程是分治算法中最复杂但也是最关键的部分。合并两个凸包时,需要找到两个凸包之间的上切线下切线

  • 上切线是连接两个凸包的最高的直线段,它连接左侧凸包的一个点和右侧凸包的一个点,并且没有其他点在这条直线的上方。
  • 下切线是连接两个凸包的最低的直线段,它同样连接左侧和右侧凸包,并且没有其他点在这条直线的下方。

通过找到上切线和下切线,我们可以将左右两部分凸包的边界线连接起来,从而形成整个点集的凸包。

3.3 寻找上切线和下切线

寻找上切线的过程

  1. 从左侧凸包最右边的点和右侧凸包最左边的点开始。
  2. 通过“叉乘”判断点的相对位置:
    • 如果右侧凸包中有一个点相对于当前直线在更上方,则顺时针移动右侧凸包的点。
    • 如果左侧凸包中的点相对于当前直线在更上方,则逆时针移动左侧凸包的点。
  3. 当两个点都不再移动时,找到的就是上切线。

寻找下切线的过程与上切线类似,但我们需要找到最低的直线段,因此判断方向相反。

3.4 叉乘的作用

在寻找上切线和下切线的过程中,叉乘用于判断三点的相对位置。叉乘结果的几何意义如下:

  • 结果为正:表示第三个点在当前直线的左侧(逆时针方向)。
  • 结果为负:表示第三个点在当前直线的右侧(顺时针方向)。
  • 结果为零:表示三点共线。

通过叉乘的几何性质,我们可以高效地找到上下切线,完成凸包的合并。

4. 代码实现

接下来是分治法求解凸包问题的完整Python代码实现:

import matplotlib.pyplot as plt# 定义点类
class Point:def __init__(self, x, y):self.x = xself.y = ydef __repr__(self):return f"({self.x}, {self.y})"# 计算叉乘,用于判断点的相对方向
def cross(o, a, b):return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x)# 分治法求解凸包
def convex_hull(points):points = sorted(points, key=lambda p: (p.x, p.y))  # 按 x 坐标排序# 递归划分并合并def divide_and_conquer(points):if len(points) <= 2:return pointsmid = len(points) // 2left_hull = divide_and_conquer(points[:mid])right_hull = divide_and_conquer(points[mid:])return merge_hulls(left_hull, right_hull)# 合并两个凸包def merge_hulls(left_hull, right_hull):# 寻找上切线def find_upper_tangent(left_hull, right_hull):i, j = len(left_hull) - 1, 0while True:moved = Falsewhile cross(left_hull[i], right_hull[j], right_hull[(j + 1) % len(right_hull)]) > 0:j = (j + 1) % len(right_hull)moved = Truewhile cross(right_hull[j], left_hull[i], left_hull[(i - 1) % len(left_hull)]) < 0:i = (i - 1) % len(left_hull)moved = Trueif not moved:breakreturn i, j# 寻找下切线def find_lower_tangent(left_hull, right_hull):i, j = len(left_hull) - 1, 0while True:moved = Falsewhile cross(left_hull[i], right_hull[j], right_hull[(j - 1) % len(right_hull)]) < 0:j = (j - 1) % len(right_hull)moved = Truewhile cross(right_hull[j], left_hull[i], left_hull[(i + 1) % len(left_hull)]) > 0:i = (i + 1) % len(left_hull)moved = Trueif not moved:breakreturn i, j# 找到上下切线upper_left, upper_right = find_upper_tangent(left_hull, right_hull)lower_left, lower_right = find_lower_tangent(left_hull, right_hull)# 合并凸包new_hull = []new_hull.append(left_hull[upper_left])new_hull.append(right_hull[upper_right])i = (upper_right + 1) % len(right_hull)while i != lower_right:new_hull.append(right_hull[i])i = (i + 1) % len(right_hull)new_hull.append(right_hull[lower_right])new_hull.append(left_hull[lower_left])i = (lower_left + 1) % len(left_hull)while i != upper_left:new_hull.append(left_hull[i])i = (i + 1) % len(left_hull)return new_hullreturn divide_and_conquer(points)# 测试数据
points = [Point(0, 0), Point(1, 1), Point(2, 0), Point(0, 2), Point(2, 2), Point(1.5, 1.5)]
hull = convex_hull(points)
print(hull)

结果展示:
在这里插入图片描述

5. 总结

通过分治法解决凸包问题,不仅能够大幅优化计算效率,还能让人更好地理解几何性质。使用分治法,我们将点集分为左右两部分,分别求解凸包,再通过上下切线合并两个凸包,最终得到完整的凸包。这种方法体现了分治法的精髓,是计算几何中的经典算法之一。

这篇关于分治算法与凸包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140626

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原