利用pipenv和pyenv管理多个相互独立的Python虚拟开发环境

2024-09-05 21:58

本文主要是介绍利用pipenv和pyenv管理多个相互独立的Python虚拟开发环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们经常会遇到这样的开发需求,比如你手头有多个开发项目,其中项目A要求用python3.7,项目B需要用python3.6,有要求项目A和项目B依赖包相互独立,互不干扰。为了满足这样的开发需求,我们需要在自己的电脑上安装多个Python版本,并且项目之间进行环境隔离。要想安装多个Python版本,可以利用pyenv这个好用的工具,对于建立多个项目之间隔离的开发环境,可以借助于pipenv这个更加好用的包管理工具。

这篇文章将给大家介绍如何利用pyenv和pipenv来管理我们的python开发环境,主要讲两个核心内容:

  1. 如何在同一台电脑上管理多个版本Python;
  2. 为每一个项目建立相互隔绝的虚拟环境。

01 — 安装多个Python版本

我们自己开发的多个项目或者从github上clone的项目,可能依赖不同的Python解释器。因此,我们要想运行这些项目,在工作电脑上就要安装不同版本的Python。

pyenv是Python版本管理工具,利用它可以在同一台电脑上安装多个版本的Python,这个过程非常简单。

1.1、安装或升级pyenv

首先安装pyenv,如果你是Mac电脑,那么推荐使用Homebrew来安装。

$ brew update && brew install pyenv

要想升级pyenv,则可以执行:

$ brew update && brew upgrade pyenv

如果不是Mac电脑,那么就用github方式来安装:

$ git clone https://github.com/pyenv/pyenv.git ~/.pyenv
$ echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bash_profile
$ echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bash_profile
$ echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n  eval "$(pyenv init -)"\nfi' >> ~/.bash_profile
$ exec "$SHELL"

这种安装方式的详细说明,还是建议大家参考官方文档:https://github.com/pyenv/pyenv#basic-github-checkout。

对于github安装的pyenv,可以按下面方式进行升级:

$ cd $(pyenv root)
$ git fetch
$ git tag
v1.2.18
$ git checkout v1.2.18

pyenv安装完成后,需要将$(pyenv root)/shims添加到PATH变量前面,这一步非常关键。

$ echo 'export PATH="$(pyenv root)/shims:$PATH"' >> ~/.bash_profile
$ source ~/.bash_profile

安装完pyenv,可以安装Python啦,一共需要两步。

$ pyenv install 3.7.7
$ pyenv rehash

执行命令pyenv versions查看安装结果。

$ pyenv versionssystem
* 3.7.7 (set by /Users/chunming.liu/.pyenv/version)

可以看到,已经成功安装了Python 3.7.7,安装的位置在/Users/chunming.liu/.pyenv。

1.3、切换Python版本

可以通过pyenv global或者pyenv local切换Python版本。pyenv global属于全局切换,切换完成后,在系统中任何地方执行python,你会发现都是同样的Python版本。

$ pyenv global 3.7.7
$ pyenv versionssystem
* 3.7.7 (set by /Users/chunming.liu/.pyenv/version)
  • 可以看到,3.7.7前面有一个星号,说明成功切换到了3.7.7版本,可以执行一下python来验证一下:
$ python
Python 3.7.7 (default, Apr 12 2020, 12:31:11)
[Clang 11.0.0 (clang-1100.0.33.17)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

pyenv local属于局部切换,只能修改当前目录下的Python版本,出了当前目录则失效。

接下来,开始为每个项目建立独立的开发环境。

02 — 用Pipenv创建虚拟环境

Pipenv是Python官方推荐的包管理工具。它综合了 virtualenv , pip 和 pyenv 三者的功能。你可以使用pipenv这一个工具来安装、卸载、跟踪和记录依赖性,并创建、使用和组织你的虚拟环境。

2.1、安装和升级pipenv

如果你是Mac电脑,那么推荐使用Homebrew来安装和升级pipenv:

$ brew update && brew install pipenv
$ brew update && brew upgrade pipenv

也可以通过pip来安装和升级pipenv:

$ pip install pipenv
$ pip install --upgrade pipenv

2.2、为项目建立虚拟环境

进入到项目目录中,通过下面的指令为项目创建虚拟环境。

$ mkdir pipenv_demo
$ cd pipenv_demo
$ pipenv --python 3.7.7
Creating a virtualenv for this project…
Pipfile: /Users/chunming.liu/work/pipenv_demo/Pipfile
Using /Users/chunming.liu/.pyenv/versions/3.7.7/bin/python3 (3.7.7) to create virtualenv…
⠙ Creating virtual environment...Using base prefix '/Users/chunming.liu/.pyenv/versions/3.7.7'
New python executable in /Users/chunming.liu/.local/share/virtualenvs/pipenv_demo-RYMSREda/bin/python3
Also creating executable in /Users/chunming.liu/.local/share/virtualenvs/pipenv_demo-RYMSREda/bin/python
Installing setuptools, pip, wheel...
done.
Running virtualenv with interpreter /Users/chunming.liu/.pyenv/versions/3.7.7/bin/python3
​
✔ Successfully created virtual environment!
Virtualenv location: /Users/chunming.liu/.local/share/virtualenvs/pipenv_demo-RYMSREda


上面的操作,给pipenv_demo这个项目初始化了一个Python 3.7.7的虚拟环境,并在项目录下生成一个项目依赖包文件Pipefile。如果系统中没有3.7.7版本的Python,pipenv会调用pyenv来安装对应的Python的版本。

默认地,虚拟环境会创建在~/.local/share/virtualenvs目录里面。我们也可以通过pipenv --venv查看项目的虚拟环境目录。可以通过 pipenv --rm 删除虚拟环境。

如果想更改虚拟环境的目录,可以在 .bashrc 或 .bash_profile 中,设置环境变量WORKON_HOME,指定虚拟环境的目录所在位置,比如想将虚拟环境放到~/.venvs目录,则可以执行下面的命令。

$ echo 'export WORKON_HOME=~/.venvs' >> ~/.bash_profile
$ source ~/.bash_profile

如果希望在项目目录下创建虚拟环境目录(.venv),需要在 .bashrc 或 .bash_profile 中配置环境变量PIPENV_VENV_IN_PROJECT:

$ echo 'export PIPENV_VENV_IN_PROJECT=1' >> ~/.bash_profile
$ source ~/.bash_profile

03 — 用Pipenv管理依赖包

pipenv使用 Pipfile 和 Pipfile.lock 来管理依赖包,并且在使用pipenv添加或删除包时,自动维护 Pipfile 文件,同时生成 Pipfile.lock 来锁定安装包的版本和依赖信息。相比pip需要手动维护requirements.txt 中的安装包和版本,具有很大的进步。

3.1 安装依赖包

为项目安装依赖包到虚拟环境中,使每个项目拥有相互独立的依赖包,是非常不错的Python的开发实践。安装依赖包到虚拟环境中的方法:

$ pipenv install pytest
Installing pytest…
Adding pytest to Pipfile's [packages]…
✔ Installation Succeeded
Pipfile.lock not found, creating…
Locking [dev-packages] dependencies…
Locking [packages] dependencies…
✔ Success!
Updated Pipfile.lock (1c4d3d)!
Installing dependencies from Pipfile.lock (1c4d3d)…🐍   ▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉ 11/11 — 00:00:16
To activate this project's virtualenv, run pipenv shell.
Alternatively, run a command inside the virtualenv with pipenv run.
  • 执行完上面的命令后,检查一下是否安装成功:
$ pipenv graph
pytest==5.4.1- attrs [required: >=17.4.0, installed: 19.3.0]- importlib-metadata [required: >=0.12, installed: 1.6.0]- zipp [required: >=0.5, installed: 3.1.0]- more-itertools [required: >=4.0.0, installed: 8.2.0]- packaging [required: Any, installed: 20.3]- pyparsing [required: >=2.0.2, installed: 2.4.7]- six [required: Any, installed: 1.14.0]- pluggy [required: >=0.12,<1.0, installed: 0.13.1]- importlib-metadata [required: >=0.12, installed: 1.6.0]- zipp [required: >=0.5, installed: 3.1.0]- py [required: >=1.5.0, installed: 1.8.1]- wcwidth [required: Any, installed: 0.1.9]
  •  
  • 可看到已经安装了pytest,还列出了pytest的依赖包。

观察项目的根目录下,又多了一个Pipfile.lock文件。这两个文件记录了此项目的依赖包,这两个文件的区别是 Pipfile中安装的包不包含包的具体版本号,而Pipfile.lock是包含包的具体的版本号的。如果不想产生Pipfile.lock文件,在安装依赖包的时候,加上–skip-lock选项即可。

打开依赖包文件Pipefile,可以看到python_version = “3.7”,说明这个项目是基于Python 3.7版本的。package部分列出来了项目的依赖包是bpytest = “*”,星号代表最新版本。

  •  

而Pipfile.lock是包含安装的依赖包具体的版本号,可以看到本次安装的pytest是5.4.1版本,并且它的依赖包的版本也列出来了。

$ cat Pipfile.lock
{"_meta": {"hash": {"sha256": "828b8ad012f4c8773e6e61e3ac2be0ffcd7540fd7ed175a8355676c8e31c4d3d"},"pipfile-spec": 6,"requires": {"python_version": "3.7"},"sources": [{"name": "pypi","url": "https://pypi.org/simple","verify_ssl": true}]},"default": {"attrs": {"hashes": ["sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c","sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72"],"version": "==19.3.0"},"importlib-metadata": {"hashes": ["sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f","sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e"],"markers": "python_version < '3.8'","version": "==1.6.0"},"more-itertools": {"hashes": ["sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c","sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507"],"version": "==8.2.0"},"packaging": {"hashes": ["sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3","sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752"],"version": "==20.3"},"pluggy": {"hashes": ["sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0","sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d"],"version": "==0.13.1"},"py": {"hashes": ["sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa","sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0"],"version": "==1.8.1"},"pyparsing": {"hashes": ["sha256:c203ec8783bf771a155b207279b9bccb8dea02d8f0c9e5f8ead507bc3246ecc1","sha256:ef9d7589ef3c200abe66653d3f1ab1033c3c419ae9b9bdb1240a85b024efc88b"],"version": "==2.4.7"},"pytest": {"hashes": ["sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172","sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970"],"index": "pypi","version": "==5.4.1"},"six": {"hashes": ["sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a","sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c"],"version": "==1.14.0"},"wcwidth": {"hashes": ["sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1","sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1"],"version": "==0.1.9"},"zipp": {"hashes": ["sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b","sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96"],"version": "==3.1.0"}},"develop": {}
}

3.2 提高依赖包安装速度

在使用pipenv的时候,常常会安装过程比较慢,通过加上 -v 参数,可以看到安装过程中的步骤信息,卡在了下载那里,这时应该可以意识到是因为网络的原因,pipenv创建的 Pipfile 中默认的Pypi源是python官方的 https://pypi.python.org/simple。我们国内用户访问下载的时候会很慢。

如果想通过Pypi的国内镜像安装依赖包,可以在安装软件包时,指定–pypi-mirror,比如通过清华大学镜像安装flask软件包:

$ pipenv install --pypi-mirror https://pypi.tuna.tsinghua.edu.cn/simple flask

为了避免每次都要指定–pypi-mirror,我一般会在创建好Pipfile以后,将文件中 source 块下的 url 字段,设置为国内的 pypi 源,我推荐的是清华的Pypi源或者阿里源,具体设置如下:

[[source]]url = "https://pypi.tuna.tsinghua.edu.cn/simple"verify_ssl = truename = "pypi"

3.3 删除依赖包

如果是要删除虚拟环境中的第三方包,执行

$ pipenv uninstall pytest

 

  • 3.4 安装项目所有的依赖包

用git管理项目时候,要把Pipfile和Pipfile.lock加入版本跟踪。这样clone了这个项目的同学,只需要执行

$ pipenv install
  •  

就可以安装所有的Pipfile中 [packages]部分列出来的包了,并且自动为项目在自己电脑上创建了虚拟环境。

3.5 安装pipefile.lock中的依赖包

上面的方法都是安装Pipfile中列出来的第三方包的最新版本,如果是想安装Pipfile.lock中固定版本的第三方依赖包,需要执行:

$ pipenv install --ignore-pipfile
  •  

3.6 安装requirements.txt里面的依赖包

如果项目之前使用requirements.txt来管理依赖的,那么使用pipenv安装所有依赖可以采用类似pip的方法:

$ pipenv install -r requirements.txt

04 — 使用虚拟环境进行开发

虚拟环境创建好了之后,就可以在里面进行开发了。

如果在命令行下开发,则在项目目录下执行pipenv shell,就进入到了虚拟环境中,在这个环境中,已经包含安装过的所有依赖包了,接下来就可以利用这些依赖包进行开发工作了。

$ pipenv shell
Launching subshell in virtual environment…
bash-3.2$  . /Users/chunming.liu/.local/share/virtualenvs/pipenv_demo-RYMSREda/bin/activate
(pipenv_demo) bash-3.2$ python
Python 3.7.7 (default, Apr 12 2020, 12:31:11)
[Clang 11.0.0 (clang-1100.0.33.17)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pytest
>>>

如果是用Pycharm进行开发,就更简单了,直接用Pycharm打开项目即可。可以从Pycharm中的左侧导航栏里面看到External Libraries显示的是虚拟环境中的Python解释器了。

在虚拟环境中执行开发好的程序,有两种方式,一种是前面提到的先执行pipenv shell进入到虚拟环境后,再执行python程序;另一种方式,则是执行pyenv run,比如在虚拟环境中执行基于pytest框架编写的测试用例,只需要执行下面的命令即可:

$ pipenv run py.test

04 — 总结

本文给大家介绍了如何使用pyenv安装多个版本Python,如何在不同的Python版本间切换。还介绍了一种Python官方推荐使用的包管理工具pipenv,它结合pyenv和pip和virtualenv的优点于一身,可以帮我们管理项目的虚拟环境、管理项目的依赖包。

在这里插入图片描述

非常建议大家尝试一下pyenv和pipenv。在实践中,推荐大家将Pipfile和Pipfile.lock加入版本跟踪,不要将虚拟环境.venv加入版本管理,因为这个包比较大,而且可以pipenv install方式重建。为每一个项目项目建立独立的虚拟环境,为每一个项目使用Pipfile管理依赖是一个非常好的实践。

参考资料

https://github.com/pyenv/pyenv

https://github.com/pypa/pipenv

https://packaging.python.org/tutorials/managing-dependencies/#installing-pipenv

https://hackersandslackers.com/pipenv-python-environment-management/

这篇关于利用pipenv和pyenv管理多个相互独立的Python虚拟开发环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140176

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.