Python案例 | 使用四阶龙格-库塔法计算Burgers方程

2024-09-05 18:12

本文主要是介绍Python案例 | 使用四阶龙格-库塔法计算Burgers方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用四阶龙格-库塔法计算Burgers方程

  • 引言
  • 求解过程
  • 完整代码

引言

Burgers方程产生于应用数学的各个领域,包括流体力学、非线性声学、气体动力学和交通流。它是一个基本的偏微分方程,可以通过删除压力梯度项从速度场的Navier-Stokes方程导出。对于黏度系数较小的情况( ν = 0.01 / π \nu = 0.01/ \pi ν=0.01/π),Burgers方程会导致经典数值方法难以解决的激波形成。在一个空间维度上,带Dirichlet边界条件的Burger方程为:
u t + u u x − ν u x x = 0 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( 0 , x ) = − s i n ( π x ) u ( t , − 1 ) = u ( t , 1 ) = 0 \begin{align*} & u_t + uu_x - \nu u_{xx} = 0 , x \in [-1,1], t \in [0,1] & \\ & u(0,x) = -sin(\pi x) & \\ & u(t,-1) = u(t,1) = 0 & \end{align*} ut+uuxνuxx=0,x[1,1],t[0,1]u(0,x)=sin(πx)u(t,1)=u(t,1)=0

求解过程

  1. 首先,定义一个函数:
    f ( u , t , d x , ν ) = − u u x + ν u x x f(u,t,dx,\nu)= -uu_x + \nu u_{xx} f(u,t,dx,ν)=uux+νuxx
def f(u, t, dx, nu=0.01/np.pi):return -u*dudx(u, dx) + nu*d2udx2(u, dx)
  1. 利用中心有限差分法,计算一阶导数 u x u_x ux
    f ′ ( x 0 ) ≈ f ( x 0 + △ x ) − f ( x 0 − △ x ) 2 △ x f'(x_0) \approx \frac{f(x_0+\bigtriangleup x) - f(x_0-\bigtriangleup x)}{2\bigtriangleup x} f(x0)2xf(x0+x)f(x0x)
def dudx(u, dx):"""Approximate the first derivative using the centered finite differenceformula."""first_deriv = np.zeros_like(u)# wrap to compute derivative at endpointsfirst_deriv[0] = (u[1] - u[-1]) / (2*dx)first_deriv[-1] = (u[0] - u[-2]) / (2*dx)# compute du/dx for all the other pointsfirst_deriv[1:-1] = (u[2:] - u[0:-2]) / (2*dx)return first_deriv
  1. 利用中心有限差分法,计算二阶导数 u x x u_{xx} uxx
    f ′ ′ ( x 0 ) ≈ f ( x 0 + △ x ) − 2 f ( x 0 ) + f ( x 0 − △ x ) △ x 2 f''(x_0) \approx \frac{f(x_0+\bigtriangleup x) - 2f(x_0) + f(x_0-\bigtriangleup x)}{\bigtriangleup x^2} f′′(x0)x2f(x0+x)2f(x0)+f(x0x)
def d2udx2(u, dx):"""Approximate the second derivative using the centered finite differenceformula."""second_deriv = np.zeros_like(u)  # 创建一个新数组second_deriv,其形状和类型与给定数组u相同,但是所有元素都被设置为 0。# wrap to compute second derivative at endpointssecond_deriv[0] = (u[1] - 2*u[0] + u[-1]) / (dx**2)second_deriv[-1] = (u[0] - 2*u[-1] + u[-2]) / (dx**2)# compute d2u/dx2 for all the other pointssecond_deriv[1:-1] = (u[2:] - 2*u[1:-1] + u[0:-2]) / (dx**2)return second_deriv
  1. 定义四阶龙格-库塔计算公式
    对一般微分方程有:
    { y ′ = f ( x , y ) y ( x 0 ) = y 0 \begin{cases} y'=f(x,y)\\ y(x_0)=y_0 \end{cases} {y=f(x,y)y(x0)=y0
    在x的取值范围内将其离散为 n n n段,定义步长,令第 n n n步对应的函数值为 y n y_n yn。于是通过一系列的推导可以得到下一步的 y n + 1 y_{n+1} yn+1值为
    y n + 1 = y n + h 6 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) y_{n+1}=y_n+\frac{h}{6} (K_1+2K_2+2K_3+K_4) yn+1=yn+6h(K1+2K2+2K3+K4)
    其中
    { K 1 = f ( x n , y n ) K 2 = f ( x n + h 2 , y n + h 2 K 1 ) K 3 = f ( x n + h 2 , y n + h 2 K 2 ) K 4 = f ( x n + h , y n + h K 3 ) \begin{cases} K_1=f(x_n, y_n) \\ K_2=f(x_n+\frac{h}{2}, y_n+\frac{h}{2}K_1) \\ K_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_2) \\ K_4=f(x_n+h,y_n+hK_3) \end{cases} K1=f(xn,yn)K2=f(xn+2h,yn+2hK1)K3=f(xn+2h,yn+2hK2)K4=f(xn+h,yn+hK3)
def rk4(f, u, t, dx, h):"""Fourth-order Runge-Kutta method for computing u at the next time step."""k1 = f(u, t, dx)k2 = f(u + 0.5*h*k1, t + 0.5*h, dx)k3 = f(u + 0.5*h*k2, t + 0.5*h, dx)k4 = f(u + h*k3, t + h, dx)return u + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
  1. Burgers方程计算
    位移初始边界条件: x 0 = − 1 x_0=-1 x0=1 x N = 1 x_N=1 xN=1
    位移离散点个数: N = 512 N=512 N=512
    时间初始边界条件: t 0 = 0 t_0=0 t0=0 t K = 500 t_K=500 tK=500
    时间离散点个数: K = 500 K=500 K=500
x = np.linspace(x0, xN, N)  # evenly spaced spatial points
dx = (xN - x0) / float(N - 1)  # space between each spatial point
dt = (tK - t0) / float(K)  # space between each temporal point
h = 2e-6  # time step for runge-kutta methodu = np.zeros(shape=(K, N))
# u[0, :] = 1 + 0.5*np.exp(-(x**2))  # compute u at initial time step
u[0, :] = -np.sin(np.pi*x)for idx in range(K-1):  # for each temporal point perform runge-kutta methodti = t0 + dt*idxU = u[idx, :]for step in range(1000):t = ti + h*stepU = rk4(f, U, t, dx, h)u[idx+1, :] = U
  1. 计算结果可视化
plt.imshow(u.T, interpolation='nearest', cmap='rainbow',extent=[t0, tK, x0, xN], origin='lower', aspect='auto')
plt.xlabel('t')
plt.ylabel('x')
plt.colorbar()
plt.show()

在这里插入图片描述

完整代码

""" Solving the Burgers' Equation using a 4th order Runge-Kutta method """import numpy as np
import matplotlib.pyplot as pltdef rk4(f, u, t, dx, h):"""Fourth-order Runge-Kutta method for computing u at the next time step."""k1 = f(u, t, dx)k2 = f(u + 0.5*h*k1, t + 0.5*h, dx)k3 = f(u + 0.5*h*k2, t + 0.5*h, dx)k4 = f(u + h*k3, t + h, dx)return u + (h/6)*(k1 + 2*k2 + 2*k3 + k4)def dudx(u, dx):"""Approximate the first derivative using the centered finite differenceformula."""first_deriv = np.zeros_like(u)# wrap to compute derivative at endpointsfirst_deriv[0] = (u[1] - u[-1]) / (2*dx)first_deriv[-1] = (u[0] - u[-2]) / (2*dx)# compute du/dx for all the other pointsfirst_deriv[1:-1] = (u[2:] - u[0:-2]) / (2*dx)return first_derivdef d2udx2(u, dx):"""Approximate the second derivative using the centered finite differenceformula."""second_deriv = np.zeros_like(u)  # 创建一个新数组second_deriv,其形状和类型与给定数组u相同,但是所有元素都被设置为 0。# wrap to compute second derivative at endpointssecond_deriv[0] = (u[1] - 2*u[0] + u[-1]) / (dx**2)second_deriv[-1] = (u[0] - 2*u[-1] + u[-2]) / (dx**2)# compute d2u/dx2 for all the other pointssecond_deriv[1:-1] = (u[2:] - 2*u[1:-1] + u[0:-2]) / (dx**2)return second_derivdef f(u, t, dx, nu=0.01/np.pi):return -u*dudx(u, dx) + nu*d2udx2(u, dx)def make_square_axis(ax):ax.set_aspect(1 / ax.get_data_ratio())def burgers(x0, xN, N, t0, tK, K):x = np.linspace(x0, xN, N)  # evenly spaced spatial pointsdx = (xN - x0) / float(N - 1)  # space between each spatial pointdt = (tK - t0) / float(K)  # space between each temporal pointh = 2e-6  # time step for runge-kutta methodu = np.zeros(shape=(K, N))# u[0, :] = 1 + 0.5*np.exp(-(x**2))  # compute u at initial time stepu[0, :] = -np.sin(np.pi*x)for idx in range(K-1):  # for each temporal point perform runge-kutta methodti = t0 + dt*idxU = u[idx, :]for step in range(1000):t = ti + h*stepU = rk4(f, U, t, dx, h)u[idx+1, :] = U# plt.imshow(u, extent=[x0, xN, t0, tK])plt.imshow(u.T, interpolation='nearest', cmap='rainbow',extent=[t0, tK, x0, xN], origin='lower', aspect='auto')plt.xlabel('t')plt.ylabel('x')plt.colorbar()plt.show()if __name__ == '__main__':# burgers(-10, 10, 1024, 0, 50, 500)burgers(-1, 1, 512, 0, 1, 500)

这篇关于Python案例 | 使用四阶龙格-库塔法计算Burgers方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139700

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.