Python案例 | 使用四阶龙格-库塔法计算Burgers方程

2024-09-05 18:12

本文主要是介绍Python案例 | 使用四阶龙格-库塔法计算Burgers方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用四阶龙格-库塔法计算Burgers方程

  • 引言
  • 求解过程
  • 完整代码

引言

Burgers方程产生于应用数学的各个领域,包括流体力学、非线性声学、气体动力学和交通流。它是一个基本的偏微分方程,可以通过删除压力梯度项从速度场的Navier-Stokes方程导出。对于黏度系数较小的情况( ν = 0.01 / π \nu = 0.01/ \pi ν=0.01/π),Burgers方程会导致经典数值方法难以解决的激波形成。在一个空间维度上,带Dirichlet边界条件的Burger方程为:
u t + u u x − ν u x x = 0 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( 0 , x ) = − s i n ( π x ) u ( t , − 1 ) = u ( t , 1 ) = 0 \begin{align*} & u_t + uu_x - \nu u_{xx} = 0 , x \in [-1,1], t \in [0,1] & \\ & u(0,x) = -sin(\pi x) & \\ & u(t,-1) = u(t,1) = 0 & \end{align*} ut+uuxνuxx=0,x[1,1],t[0,1]u(0,x)=sin(πx)u(t,1)=u(t,1)=0

求解过程

  1. 首先,定义一个函数:
    f ( u , t , d x , ν ) = − u u x + ν u x x f(u,t,dx,\nu)= -uu_x + \nu u_{xx} f(u,t,dx,ν)=uux+νuxx
def f(u, t, dx, nu=0.01/np.pi):return -u*dudx(u, dx) + nu*d2udx2(u, dx)
  1. 利用中心有限差分法,计算一阶导数 u x u_x ux
    f ′ ( x 0 ) ≈ f ( x 0 + △ x ) − f ( x 0 − △ x ) 2 △ x f'(x_0) \approx \frac{f(x_0+\bigtriangleup x) - f(x_0-\bigtriangleup x)}{2\bigtriangleup x} f(x0)2xf(x0+x)f(x0x)
def dudx(u, dx):"""Approximate the first derivative using the centered finite differenceformula."""first_deriv = np.zeros_like(u)# wrap to compute derivative at endpointsfirst_deriv[0] = (u[1] - u[-1]) / (2*dx)first_deriv[-1] = (u[0] - u[-2]) / (2*dx)# compute du/dx for all the other pointsfirst_deriv[1:-1] = (u[2:] - u[0:-2]) / (2*dx)return first_deriv
  1. 利用中心有限差分法,计算二阶导数 u x x u_{xx} uxx
    f ′ ′ ( x 0 ) ≈ f ( x 0 + △ x ) − 2 f ( x 0 ) + f ( x 0 − △ x ) △ x 2 f''(x_0) \approx \frac{f(x_0+\bigtriangleup x) - 2f(x_0) + f(x_0-\bigtriangleup x)}{\bigtriangleup x^2} f′′(x0)x2f(x0+x)2f(x0)+f(x0x)
def d2udx2(u, dx):"""Approximate the second derivative using the centered finite differenceformula."""second_deriv = np.zeros_like(u)  # 创建一个新数组second_deriv,其形状和类型与给定数组u相同,但是所有元素都被设置为 0。# wrap to compute second derivative at endpointssecond_deriv[0] = (u[1] - 2*u[0] + u[-1]) / (dx**2)second_deriv[-1] = (u[0] - 2*u[-1] + u[-2]) / (dx**2)# compute d2u/dx2 for all the other pointssecond_deriv[1:-1] = (u[2:] - 2*u[1:-1] + u[0:-2]) / (dx**2)return second_deriv
  1. 定义四阶龙格-库塔计算公式
    对一般微分方程有:
    { y ′ = f ( x , y ) y ( x 0 ) = y 0 \begin{cases} y'=f(x,y)\\ y(x_0)=y_0 \end{cases} {y=f(x,y)y(x0)=y0
    在x的取值范围内将其离散为 n n n段,定义步长,令第 n n n步对应的函数值为 y n y_n yn。于是通过一系列的推导可以得到下一步的 y n + 1 y_{n+1} yn+1值为
    y n + 1 = y n + h 6 ( K 1 + 2 K 2 + 2 K 3 + K 4 ) y_{n+1}=y_n+\frac{h}{6} (K_1+2K_2+2K_3+K_4) yn+1=yn+6h(K1+2K2+2K3+K4)
    其中
    { K 1 = f ( x n , y n ) K 2 = f ( x n + h 2 , y n + h 2 K 1 ) K 3 = f ( x n + h 2 , y n + h 2 K 2 ) K 4 = f ( x n + h , y n + h K 3 ) \begin{cases} K_1=f(x_n, y_n) \\ K_2=f(x_n+\frac{h}{2}, y_n+\frac{h}{2}K_1) \\ K_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_2) \\ K_4=f(x_n+h,y_n+hK_3) \end{cases} K1=f(xn,yn)K2=f(xn+2h,yn+2hK1)K3=f(xn+2h,yn+2hK2)K4=f(xn+h,yn+hK3)
def rk4(f, u, t, dx, h):"""Fourth-order Runge-Kutta method for computing u at the next time step."""k1 = f(u, t, dx)k2 = f(u + 0.5*h*k1, t + 0.5*h, dx)k3 = f(u + 0.5*h*k2, t + 0.5*h, dx)k4 = f(u + h*k3, t + h, dx)return u + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
  1. Burgers方程计算
    位移初始边界条件: x 0 = − 1 x_0=-1 x0=1 x N = 1 x_N=1 xN=1
    位移离散点个数: N = 512 N=512 N=512
    时间初始边界条件: t 0 = 0 t_0=0 t0=0 t K = 500 t_K=500 tK=500
    时间离散点个数: K = 500 K=500 K=500
x = np.linspace(x0, xN, N)  # evenly spaced spatial points
dx = (xN - x0) / float(N - 1)  # space between each spatial point
dt = (tK - t0) / float(K)  # space between each temporal point
h = 2e-6  # time step for runge-kutta methodu = np.zeros(shape=(K, N))
# u[0, :] = 1 + 0.5*np.exp(-(x**2))  # compute u at initial time step
u[0, :] = -np.sin(np.pi*x)for idx in range(K-1):  # for each temporal point perform runge-kutta methodti = t0 + dt*idxU = u[idx, :]for step in range(1000):t = ti + h*stepU = rk4(f, U, t, dx, h)u[idx+1, :] = U
  1. 计算结果可视化
plt.imshow(u.T, interpolation='nearest', cmap='rainbow',extent=[t0, tK, x0, xN], origin='lower', aspect='auto')
plt.xlabel('t')
plt.ylabel('x')
plt.colorbar()
plt.show()

在这里插入图片描述

完整代码

""" Solving the Burgers' Equation using a 4th order Runge-Kutta method """import numpy as np
import matplotlib.pyplot as pltdef rk4(f, u, t, dx, h):"""Fourth-order Runge-Kutta method for computing u at the next time step."""k1 = f(u, t, dx)k2 = f(u + 0.5*h*k1, t + 0.5*h, dx)k3 = f(u + 0.5*h*k2, t + 0.5*h, dx)k4 = f(u + h*k3, t + h, dx)return u + (h/6)*(k1 + 2*k2 + 2*k3 + k4)def dudx(u, dx):"""Approximate the first derivative using the centered finite differenceformula."""first_deriv = np.zeros_like(u)# wrap to compute derivative at endpointsfirst_deriv[0] = (u[1] - u[-1]) / (2*dx)first_deriv[-1] = (u[0] - u[-2]) / (2*dx)# compute du/dx for all the other pointsfirst_deriv[1:-1] = (u[2:] - u[0:-2]) / (2*dx)return first_derivdef d2udx2(u, dx):"""Approximate the second derivative using the centered finite differenceformula."""second_deriv = np.zeros_like(u)  # 创建一个新数组second_deriv,其形状和类型与给定数组u相同,但是所有元素都被设置为 0。# wrap to compute second derivative at endpointssecond_deriv[0] = (u[1] - 2*u[0] + u[-1]) / (dx**2)second_deriv[-1] = (u[0] - 2*u[-1] + u[-2]) / (dx**2)# compute d2u/dx2 for all the other pointssecond_deriv[1:-1] = (u[2:] - 2*u[1:-1] + u[0:-2]) / (dx**2)return second_derivdef f(u, t, dx, nu=0.01/np.pi):return -u*dudx(u, dx) + nu*d2udx2(u, dx)def make_square_axis(ax):ax.set_aspect(1 / ax.get_data_ratio())def burgers(x0, xN, N, t0, tK, K):x = np.linspace(x0, xN, N)  # evenly spaced spatial pointsdx = (xN - x0) / float(N - 1)  # space between each spatial pointdt = (tK - t0) / float(K)  # space between each temporal pointh = 2e-6  # time step for runge-kutta methodu = np.zeros(shape=(K, N))# u[0, :] = 1 + 0.5*np.exp(-(x**2))  # compute u at initial time stepu[0, :] = -np.sin(np.pi*x)for idx in range(K-1):  # for each temporal point perform runge-kutta methodti = t0 + dt*idxU = u[idx, :]for step in range(1000):t = ti + h*stepU = rk4(f, U, t, dx, h)u[idx+1, :] = U# plt.imshow(u, extent=[x0, xN, t0, tK])plt.imshow(u.T, interpolation='nearest', cmap='rainbow',extent=[t0, tK, x0, xN], origin='lower', aspect='auto')plt.xlabel('t')plt.ylabel('x')plt.colorbar()plt.show()if __name__ == '__main__':# burgers(-10, 10, 1024, 0, 50, 500)burgers(-1, 1, 512, 0, 1, 500)

这篇关于Python案例 | 使用四阶龙格-库塔法计算Burgers方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139700

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下