【深度学习 卷积】利用ResNet-50模型实现高效GPU图片预测

2024-09-05 16:36

本文主要是介绍【深度学习 卷积】利用ResNet-50模型实现高效GPU图片预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍了如何使用训练好的ResNet-50模型进行图片预测。通过详细阐述模型原理、训练过程及预测步骤,帮助读者掌握基于深度学习的图片识别技术。

一、引言

近年来,深度学习技术在计算机视觉领域取得了显著成果,特别是卷积神经网络(CNN)在图像识别、分类等方面表现出色。ResNet-50作为一种经典的CNN模型,以其强大的特征提取能力和较高的预测准确率,在众多领域得到了广泛应用。本文将介绍如何使用训练好的ResNet-50模型进行图片预测。

二、ResNet-50模型原理

残差学习
ResNet-50模型的核心是残差学习。残差学习通过引入跳跃连接(shortcut connections)来缓解深层网络训练过程中的梯度消失和梯度爆炸问题。跳跃连接使得网络可以更容易地学习到恒等映射,从而提高训练效果。

网络结构
ResNet-50模型包含50个卷积层,分为四个阶段,每个阶段包含多个残差块。残差块内部包含多个卷积层、批量归一化层和ReLU激活层。通过不断堆叠残差块,ResNet-50实现了对输入图片的深层特征提取。

三、训练ResNet-50模型

数据准备
首先,我们需要准备大量的标注图片数据。这些数据分为训练集、验证集和测试集。图片数据需进行预处理,包括缩放、裁剪、翻转等操作,以增加数据多样性。

模型训练
使用预训练的ResNet-50模型作为基础,在训练集上对模型进行微调。具体步骤如下:

(1)加载预训练的ResNet-50模型;

(2)替换模型的最后三层(全局平均池化层、全连接层和softmax层),以适应新的分类任务;

(3)定义损失函数(如交叉熵损失)和优化器(如Adam或SGD);

(4)在训练集上迭代训练模型,直至达到预设的收敛条件。

train.py

import torch
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import warnings
warnings.filterwarnings('ignore')
# 定义设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("此次训练设备:", device)# 加载预训练的ResNet-50模型
resnet50 = models.resnet50(pretrained=True)# 二分类任务
num_classes = 2
resnet50.fc = torch.nn.Linear(resnet50.fc.in_features, num_classes)
resnet50 = resnet50.to(device)
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(resnet50.parameters(), lr=0.001,momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10

这篇关于【深度学习 卷积】利用ResNet-50模型实现高效GPU图片预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139493

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构