【数据分享】2000—2023年我国省市县三级逐月归一化植被指数(NDVI)数据(Shp/Excel格式)

本文主要是介绍【数据分享】2000—2023年我国省市县三级逐月归一化植被指数(NDVI)数据(Shp/Excel格式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前我们分享过2000—2023年逐月归一化植被指数(NDVI)栅格数据(可查看之前的文章获悉详情),该数据来源于NASA定期发布的MOD13A3数据集!很多小伙伴拿到数据后反馈栅格数据不太方便使用,问我们能不能把数据处理为更方便使用的Shp和Excel格式的数据!

我们特地对数值在-0.2—1之间的NDVI栅格数据进行了处理,将2000-2023年逐月的归一化植被指数栅格分别按照我国省级行政边界、地级市行政边界、区县级行政边界进行了求平均数处理得到了本次分享的数据——Shp和Excel格式的我国省市县三个等级的2000-2023年的逐月归一化植被指数数据!

大家可以在公众号回复关键词 334 按照转发要求获取数据!以下为数据的详细介绍:

01 数据预览

1.省级2000-2023年逐月归一化植被指数数据

首先是Shp格式的数据,34个省级区划2000-2023年逐月的归一化植被指数数据汇总在一个Shp文件中,下面我们以2023年12月为例来预览一下:

2023年12月各省的NDVI数据(Shp格式)
2000年各省逐月NDVI数据的属性表

下面是Excel格式的数据,34个省级区划2000-2023年逐月的归一化植被指数数据汇总在一个Excel文件中,下面我们来预览一下:

2000年-2023年各省逐月NDVI数据(Excel格式)

2.市级2000-2023年逐月归一化植被指数数据

首先是Shp格式的数据,375个城市2000-2023年逐月的归一化植被指数数据汇总在一个Shp文件中,下面我们以2023年12月为例来预览一下:

2023年12月各市的NDVI数据(Shp格式)
2000年-2023年各市逐月NDVI数据的属性表

下面是Excel格式的数据,375个城市2000-2023年逐月的归一化植被指数数据汇总在一个Excel文件中,下面我们来预览一下:

2000年-2023年各市逐月NDVI数据(Excel格式)

3.县级2000-2023年逐月归一化植被指数数据

首先是Shp格式的数据,2875个区县2000-2023年逐月的归一化植被指数数据汇总在一个Shp文件中,下面我们以2023年12月为例来预览一下:

2023年12月各区县的NDVI数据(Shp格式)
2000年-2023年各区县逐月NDVI数据的属性表

下面是Excel格式的数据,2891个区县2000-2023年逐月的归一化植被指数数据汇总在一个Excel文件中,下面我们来预览一下:

2000年-2023年各区县逐月NDVI数据(Excel格式)

02 数据详情

数据来源:

原始数据来源于NASA定期发布的MOD13A3数据集,官方提供自2000年2月起逐月的NDVI数据,数据空间分辨率为1km,数据格式为Tiff,数据范围为全国范围,数值在-2000—10000之间。官方下载网站:https://search.earthdata.nasa.gov/search

数据处理说明:

基于逐月归一化植被指数(NDVI)数据,我们采用国家地理信息公共服务平台(天地图)发布的审图号为GS(2024)0650号的2024年省市县三级行政区划Shp数据(可查看之前的文章获悉详情),对每个省\每个地级市\每个区县内的栅格值进行了求平均数处理,得到了省市县三级的逐月归一化植被指数!

数值范围

-0.2—1

数据格式

Shp和Excel格式

时间范围:

2000年2月-2023年12月(逐月)

空间范围:

省市县三级

数据引用

Didan, K. (2015). MOD13A3 MODIS/Terra vegetation Indices Monthly L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2024-08-10 from https://doi.org/10.5067/MODIS/MOD13A3.006如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!

03 数据获取

这篇关于【数据分享】2000—2023年我国省市县三级逐月归一化植被指数(NDVI)数据(Shp/Excel格式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139459

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro