【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】

2024-09-05 14:08

本文主要是介绍【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门:【51nod】算法马拉松4 F 移数字

涉及知识点:多项式求逆,多项式除法,多点插值,阶乘取模。

对于N!%P,复杂度为 O(Nlog2N)
但常数巨大,和暴力算实际复杂度只相差常数= =
这个是可以扩展到组合数取模的~

my  code:

#include <stdio.h>
#include <string.h>
#include <map>
#include <math.h>
#include <vector>
#include <algorithm>
using namespace std ;typedef long long LL ;
typedef long long Int ;
#define clr( a , x ) memset ( a , x , sizeof a )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , Sqrt
#define mid ( ( l + r ) >> 1 )const int MAXN = 300005 ;vector < int > M[MAXN << 2] ;
vector < int > F[MAXN << 2] ;
int x1[MAXN] , x2[MAXN] , x3[MAXN] , tmp[MAXN] ;
int A[MAXN] , B[MAXN] , R[MAXN] ;
int a[MAXN] ;
int mod , g ;
int S[MAXN] , top ;
int n ;
int ans ;
int Sqrt ;int exgcd ( int a , int b , int& x , int& y ) {if ( b ) {exgcd ( b , a % b , y , x ) ;y -= a / b * x ;} else {x = 1 ;y = 0 ;}
}int inv ( int a ) {int x , y , b = mod ;exgcd ( a , b , x , y ) ;if ( x < 0 ) x += mod ;return x ;
}int powmod ( int a , int b ) {int res = 1 , tmp = a ;while ( b ) {if ( b & 1 ) res = ( LL ) res * tmp % mod ;tmp = ( LL ) tmp * tmp % mod ;b >>= 1 ;}return res ;
}void DFT ( int y[] , int n , int rev ) {for ( int i = 1 , j , k , t ; i < n ; ++ i ) {for ( j = 0 , k = n >> 1 , t = i ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;if ( i < j ) swap ( y[i] , y[j] ) ;}for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {int wn = powmod ( g , ( mod - 1 ) / s ) ;if ( rev ) wn = inv ( wn ) ;for ( int k = 0 ; k < n ; k += s ) {LL w = 1 , t ;for ( int i = k ; i < k + ds ; ++ i , w = w * wn % mod ) {y[i + ds] = ( y[i] - ( t = w * y[i + ds] % mod ) + mod ) % mod ;y[i] = ( y[i] + t ) % mod ;}}}
}void INV ( int A[] , int B[] , int n ) {B[0] = inv ( A[0] ) ;int i , n1 , t , vn , s , ds ;for ( s = 2 , ds = 1 ; ds < n ; ds = s , s <<= 1 ) {n1 = ( s << 1 ) , t = min ( s , n ) , vn = inv ( n1 ) ;for ( i = 0 ; i < t ; ++ i ) tmp[i] = A[i] ;for ( i = t ; i < n1 ; ++ i ) tmp[i] = 0 ;DFT ( tmp , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) B[i] = B[i] * ( 2 - ( LL ) tmp[i] * B[i] % mod + mod ) % mod ;DFT ( B , n1 , 1 ) ;for ( i = 0 ; i < t ; ++ i ) B[i] = ( LL ) B[i] * vn % mod ;for ( i = t ; i < n1 ; ++ i ) B[i] = 0 ;}
}void DIV ( int A[] , int B[] , int R[] , int n , int m ) {int n1 = 1 , n2 = n - m + 1 , i ;while ( n1 <= n * 2 ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = A[n - i - 1] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = B[m - i - 1] ;for ( i = m ; i < n2 ; ++ i ) x2[i] = 0 ;for ( i = n2 ; i < n1 ; ++ i ) x1[i] = x2[i] = 0 ;for ( i = 0 ; i < n1 ; ++ i ) x3[i] = 0 ;INV ( x2 , x3 , n2 ) ;DFT ( x1 , n1 , 0 ) ;DFT ( x3 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x3[i] % mod ;DFT ( x1 , n1 , 1 ) ;int vn = inv ( n1 ) ;for ( i = 0 ; i < n2 ; ++ i ) x2[n2 - i - 1] = ( LL ) x1[i] * vn % mod ;for ( i = n2 ; i < n1 ; ++ i ) x2[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) B[i] = 0 ;DFT ( x2 , n1 , 0 ) ;DFT ( B , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x2[i] = ( LL ) x2[i] * B[i] % mod ;DFT ( x2 , n1 , 1 ) ;for ( i = 0 ; i < m - 1 ; ++ i ) {R[i] = A[i] - ( LL ) x2[i] * vn % mod ;if ( R[i] < 0 ) R[i] += mod ;}
}void preprocess ( int n ) {top = 0 ;int i , flag ;for ( i = 2 ; i * i <= n ; ++ i ) {if ( n % i == 0 ) {S[top ++] = i ;while ( n % i == 0 ) n /= i ;}}if ( n > 1 ) S[top ++] = n ;for ( g = 1 ; ; ++ g ) {flag = 1 ;for ( i = 0 ; i < top ; ++ i ) {if ( powmod ( g , ( mod - 1 ) / S[i] ) == 1 ) {flag = 0 ;break ;}}if ( flag ) return ;}
}void deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , n1 = 1 , i ;while ( n1 < n + m ) n1 <<= 1 ;for ( i = 0 ; i < n ; ++ i ) x1[i] = F1[i] ;for ( i = 0 ; i < m ; ++ i ) x2[i] = F2[i] ;for ( i = n ; i < n1 ; ++ i ) x1[i] = 0 ;for ( i = m ; i < n1 ; ++ i ) x2[i] = 0 ;DFT ( x1 , n1 , 0 ) ;DFT ( x2 , n1 , 0 ) ;for ( i = 0 ; i < n1 ; ++ i ) x1[i] = ( LL ) x1[i] * x2[i] % mod ;DFT ( x1 , n1 , 1 ) ;LL vn = inv ( n1 ) ;for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] * vn % mod ) ;
}void brute_deal ( vector < int > & F , vector < int > & F1 , vector < int > & F2 , int sz ) {int n = F1.size () , m = F2.size () , i , j ;for ( i = 0 ; i < sz ; ++ i ) x1[i] = 0 ;for ( i = 0 ; i < n ; ++ i ) {for ( j = 0 ; j < m ; ++ j ) {x1[i + j] = ( x1[i + j] + ( LL ) F1[i] * F2[j] ) % mod ;}}for ( i = 0 ; i < sz ; ++ i ) F.push_back ( x1[i] ) ;
}void build ( int o , int l , int r ) {if ( l == r ) {M[o].push_back ( ( mod - a[l] ) % mod ) ;M[o].push_back ( 1 ) ;F[o].push_back ( l ) ;F[o].push_back ( 1 ) ;return ;}int m = mid , n = r - l + 2 ;build ( lson ) ;build ( rson ) ;if ( n <= 1400 ) {brute_deal ( M[o] , M[ls] , M[rs] , n ) ;brute_deal ( F[o] , F[ls] , F[rs] , n ) ;return ;}deal ( M[o] , M[ls] , M[rs] , n ) ;deal ( F[o] , F[ls] , F[rs] , n ) ;
}void get ( int A[] , vector < int > & F , int n ) {for ( int i = 0 ; i < n ; ++ i ) A[i] = F[i] ;
}void go ( int o , int l , int r ) {int m = mid , i , j ;int n = r - l + 2 , nL = F[ls].size () , nR = F[rs].size () ;get ( A , F[o] , n ) ;if ( n <= 500 ) {for ( i = l ; i <= r ; ++ i ) {LL x = 0 , y = 1 ;for ( j = 0 ; j < n ; ++ j ) {x = ( x + A[j] * y ) % mod ;y = y * a[i] % mod ;}ans = ans * x % mod ;}return ;}get ( B , M[ls] , nL ) ;DIV ( A , B , R , n , nL ) ;for ( i = 0 ; i < nL ; ++ i ) F[ls][i] = R[i] ;F[ls][nL - 1] = 0 ;get ( B , M[rs] , nR ) ;DIV ( A , B , R , n , nR ) ;for ( i = 0 ; i < nR ; ++ i ) F[rs][i] = R[i] ;F[rs][nR - 1] = 0 ;go ( lson ) ;go ( rson ) ;
}void calc ( int n ) {Sqrt = sqrt ( 1.0 * n ) ;for ( int i = 0 ; i < Sqrt ; ++ i ) a[i + 1] = Sqrt * i % mod ;build ( root ) ;
//  printf ( "ok\n" ) ;go ( root ) ;for ( int i = Sqrt * Sqrt + 1 ; i <= n ; ++ i ) ans = ( LL ) ans * i % mod ;
}void solve () {scanf ( "%d%d" , &n , &mod ) ;if ( n >= mod ) {printf ( "0\n" ) ;return ;}ans = 1 ;preprocess ( mod - 1 ) ;calc ( n ) ;if ( n & 1 ) ans = ( LL ) ans * inv ( 2 ) % mod ;printf ( "%d\n" , ans ) ;
}int main () {solve () ;return 0 ;
}

这篇关于【51nod】算法马拉松4 F 移数字 【快速求N!%P】【FFT】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139175

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

SpringBoot快速搭建TCP服务端和客户端全过程

《SpringBoot快速搭建TCP服务端和客户端全过程》:本文主要介绍SpringBoot快速搭建TCP服务端和客户端全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录TCPServerTCPClient总结由于工作需要,研究了SpringBoot搭建TCP通信的过程

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完