深度学习示例2-多输入多输出的神经网络模型

2024-09-05 12:44

本文主要是介绍深度学习示例2-多输入多输出的神经网络模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

一、代码示例

from tensorflow import keras
from tensorflow.keras import layers
import numpy as np# 定义 多输入 多输出的模型
vocabulary_size = 1000
num_tags = 100
num_departments = 4title = keras.Input(shape=(vocabulary_size,), name = "title")
text_body = keras.Input(shape=(vocabulary_size,), name = "text_body")
tags = keras.Input(shape=(num_tags,), name = "tags")features = layers.Concatenate() ([title, text_body, tags])features = layers.Dense(64, activation = "relu") (features)
priority = layers.Dense(1, activation = "sigmoid", name = "priority") (features)
department = layers.Dense(num_departments, activation = "softmax", name = "department") (features)model = keras.Model(inputs=[title, text_body, tags], outputs=[priority, department])# 训练多输入 多输出的模型
num_samples = 1280title_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
text_body_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
tags_data = np.random.randint(0, 2, size=(num_samples, num_tags))priority_data = np.random.random(size=(num_samples, 1))
department_data = np.random.randint(0, 2, size=(num_samples, num_departments))model.compile(optimizer="rmsprop", loss=["mean_squared_error", "categorical_crossentropy"], metrics=[["mean_absolute_error"], ["accuracy"]])
model.fit([title_data, text_body_data, tags_data], [priority_data, department_data], epochs=10)
model.evaluate([title_data, text_body_data, tags_data], [priority_data, department_data])priority_preds, department_preds = model.predict([title_data, text_body_data, tags_data]
)

运行结果:

Epoch 1/10
40/40 [==============================] - 1s 2ms/step - loss: 4.5477 - priority_loss: 0.1296 - department_loss: 4.4181 - priority_mean_absolute_error: 0.2958 - department_accuracy: 0.2766
Epoch 2/10
40/40 [==============================] - 0s 2ms/step - loss: 4.1786 - priority_loss: 0.1377 - department_loss: 4.0410 - priority_mean_absolute_error: 0.3057 - department_accuracy: 0.3273
Epoch 3/10
40/40 [==============================] - 0s 2ms/step - loss: 4.8698 - priority_loss: 0.1714 - department_loss: 4.6984 - priority_mean_absolute_error: 0.3389 - department_accuracy: 0.3023
Epoch 4/10
40/40 [==============================] - 0s 2ms/step - loss: 5.5446 - priority_loss: 0.2163 - department_loss: 5.3283 - priority_mean_absolute_error: 0.3830 - department_accuracy: 0.3195
Epoch 5/10
40/40 [==============================] - 0s 2ms/step - loss: 7.1691 - priority_loss: 0.2945 - department_loss: 6.8746 - priority_mean_absolute_error: 0.4610 - department_accuracy: 0.3102
Epoch 6/10
40/40 [==============================] - 0s 2ms/step - loss: 7.9824 - priority_loss: 0.3229 - department_loss: 7.6595 - priority_mean_absolute_error: 0.4873 - department_accuracy: 0.2773
Epoch 7/10
40/40 [==============================] - 0s 2ms/step - loss: 9.4634 - priority_loss: 0.3445 - department_loss: 9.1190 - priority_mean_absolute_error: 0.5088 - department_accuracy: 0.2594
Epoch 8/10
40/40 [==============================] - 0s 2ms/step - loss: 10.7300 - priority_loss: 0.3445 - department_loss: 10.3856 - priority_mean_absolute_error: 0.5088 - department_accuracy: 0.2820
Epoch 9/10
40/40 [==============================] - 0s 2ms/step - loss: 12.3106 - priority_loss: 0.3445 - department_loss: 11.9661 - priority_mean_absolute_error: 0.5088 - department_accuracy: 0.2898
Epoch 10/10

这篇关于深度学习示例2-多输入多输出的神经网络模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138993

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT