太阳能光伏电池板图像数据集

2024-09-05 10:52

本文主要是介绍太阳能光伏电池板图像数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 太阳能光伏电池板图像数据集】标签为‘bird-drop’, ‘clean’, ‘dusty’, ‘electrical-damage’, ‘physical-damage’, ‘snow-covered’—>‘鸟粪, 清洁, 脏污, 电气损坏 ,物理损坏, 积雪覆盖’。 
共2052张,7:2:1比例划分,标注文件为YOLO适用的txt格式。可以直接用于模型训练。

数据集名称:太阳能光伏电池板状态识别数据集

数据集概述

该数据集包含2052张太阳能光伏电池板的图像,这些图像涵盖了六种不同的状态标签:‘bird-drop’(鸟粪)、‘clean’(清洁)、‘dusty’(脏污)、‘electrical-damage’(电气损坏)、‘physical-damage’(物理损坏)和‘snow-covered’(积雪覆盖)。数据集已经按照7:2:1的比例进行了训练集、验证集和测试集的划分,并且所有图像都已经按照YOLO格式进行了标注,可以直接用于模型训练。

数据集特点
  • 图像数量:总共2052张图像。
  • 标签分类:六种类别。
  • 数据划分
    • 训练集:1436张图像(约70%)
    • 验证集:410张图像(约20%)
    • 测试集:206张图像(约10%)
标签说明
  • bird-drop:表示图像中太阳能光伏电池板上有鸟粪。
  • clean:表示图像中的太阳能光伏电池板是干净的。
  • dusty:表示图像中的太阳能光伏电池板上有灰尘。
  • electrical-damage:表示图像中的太阳能光伏电池板存在电气损坏。
  • physical-damage:表示图像中的太阳能光伏电池板存在物理损坏。
  • snow-covered:表示图像中的太阳能光伏电池板被积雪覆盖。
标注格式

数据集中的每个图像都有一个对应的标注文件,采用YOLO格式。YOLO格式的标注文件是一个文本文件,其中每一行对应一个目标框,格式如下:

 
1<class_index> <x_center> <y_center> <width> <height>

其中:

  • class_index:目标类别的索引号(从0开始)。
  • x_center 和 y_center:目标框中心点相对于图像宽度和高度的比例位置。
  • width 和 height:目标框宽度和高度相对于图像宽度和高度的比例大小。
使用说明
  1. 数据集下载:下载整个数据集压缩包。

  2. 数据集解压:解压数据集到指定目录。

  3. 数据集结构

    1dataset/
    2├── train/
    3│   ├── images/
    4│   └── labels/
    5├── valid/
    6│   ├── images/
    7│   └── labels/
    8└── test/
    9    ├── images/
    10    └── labels/
  4. 模型训练:使用YOLO或其他兼容YOLO格式的框架进行模型训练。

  5. 模型评估:使用测试集评估模型性能。

示例标注文件

假设有一张图像,尺寸为640x480像素,图像中有两块太阳能光伏电池板,一块干净,另一块有积雪覆盖。对应的标注文件可能如下所示:

10 0.4 0.3 0.2 0.15  # 清洁的太阳能光伏电池板
25 0.6 0.4 0.2 0.15  # 积雪覆盖的太阳能光伏电池板

这里,0 表示“clean”类别,5 表示“snow-covered”类别。

应用场景
  • 光伏电站维护:帮助维护人员快速识别光伏电池板的状态,及时清理或维修。
  • 自动化监控系统:集成到自动化监控系统中,实时监测光伏电池板的工作状态。
注意事项
  • 在使用该数据集之前,请确保已经正确安装了YOLO框架及相关依赖。
  • 对于特定的应用场景,可能需要进一步调整模型以获得更好的性能。
  • 如果数据集中某些类别的样本较少,建议使用数据增强技术来增加样本多样性。

这个数据集对于太阳能光伏电池板状态识别的研究和应用具有很高的实用价值,能够帮助研究人员和工程师快速搭建和测试相应的模型。

 

这篇关于太阳能光伏电池板图像数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138760

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒