Chainlit结合百度飞浆的ocr识别和nlp自然语言处理做图片文字信息提取

本文主要是介绍Chainlit结合百度飞浆的ocr识别和nlp自然语言处理做图片文字信息提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PP飞桨简介

PaddlePaddle(PArallel Distributed Deep LEarning),是由百度公司开发的一款开源深度学习平台,支持动态和静态图模式,提供了从模型构建到训练、预测等一系列的功能。PaddlePaddle 的设计目标是让开发者能够更容易地实现、训练和部署自己的深度学习模型。它支持多种操作系统,并提供了多种编程接口,包括 Python 和 C++。

  • PaddleOCR:PaddleOCR 是基于 PaddlePaddle 的 OCR(Optical Character Recognition,光学字符识别)工具包,主要用于文字检测和识别任务。它可以识别多种语言的文字,并且支持多种预训练模型。PaddleOCR 提供了一个简单易用的接口,让用户能够快速地进行文字识别任务,同时也可以根据具体需求进行模型的微调和扩展。

  • Paddlenlp:Paddlenlp 是一个自然语言处理(NLP, Natural Language Processing)工具包,基于 PaddlePaddle 构建。它为文本分类、命名实体识别、情感分析等多种 NLP 任务提供了预训练模型和相应的 API。Paddlenlp 旨在帮助研究人员和开发者快速构建和测试 NLP 模型,并提供了丰富的中文预训练模型资源。

官网地址 :https://www.paddlepaddle.org.cn/

快速上手

创建一个文件,例如“chainlit_chat”

mkdir chainlit_chat

进入 chainlit_chat文件夹下,执行命令创建python 虚拟环境空间(需要提前安装好python sdkChainlit 需要python>=3.8。,具体操作,由于文章长度问题就不在叙述,自行百度),命令如下:

python -m venv .venv
  • 这一步是避免python第三方库冲突,省事版可以跳过
  • .venv是创建的虚拟空间文件夹可以自定义

接下来激活你创建虚拟空间,命令如下:

#linux or mac
source .venv/bin/activate
#windows
.venv\Scripts\activate

在项目根目录下创建requirements.txt,内容如下:

chainlit~=1.1.306
paddlepaddle
paddleocr
paddlenlp
colorama
openai

在项目根目录下创建.env环境变量,配置如下:

OPENAI_BASE_URL="https://open.bigmodel.cn/api/paas/v4"
OPENAI_API_KEY="your-api-key"
  • OPENAI_BASE_URL 是 openai的api 的base地址,如果你能直接使用openai,这可以不设置,这里我用的是智谱GLM-4,因为他和openai的接口兼容
  • OPENAI_API_KEY 替换成你自己的API 密匙

执行以下命令安装依赖:

pip install -r .\requirements.txt
  • 安装后,项目根目录下会多出.chainlit.files文件夹和chainlit.md文件

在项目根目录下创建app.py文件,代码如下:

import base64
import reimport chainlit as cl
from chainlit.input_widget import Select, Slider, Switch
from openai import AsyncOpenAI
from paddleocr import PaddleOCRfrom fp import ocr_nlp_processor# 初始化 PaddleOCR 模型
# 需运行一次以下载并加载模型到内存中
ocr = PaddleOCR(use_angle_cls=True, lang="ch")client = AsyncOpenAI()def encode_image(image_path):with open(image_path, "rb") as image_file:return base64.b64encode(image_file.read()).decode("utf-8")@cl.on_settings_update
async def on_settings_update(settings: cl.chat_settings):cl.user_session.set("settings", settings)# 提取数字
def get_number(value):# 提取文本中的数字部分number_pattern = re.compile(r'\d+')result = number_pattern.search(value)if result:extracted_number = result.group()return f"'{extracted_number}"  # 添加'else:return value  # 如果没有找到数字,直接返回原始值@cl.step(type="tool", name="图片OCR识别")
async def tool(images, content):text_result = ""if images:for image in images:print(image)# 使用 PaddleOCR 模型进行文字识别result = ocr.ocr(image.path, cls=True)# 打印识别结果print(result)for idx in range(len(result)):res = result[idx]for line in res:text_result += line[1][0]+'\n'ocr_nlp_processor(text_result)return text_result@cl.on_chat_start
async def start_chat():settings = await cl.ChatSettings([Select(id="Model",label="Model",values=["llava:7b", "qwen-vl-plus", "qwen-vl-max"],initial_index=0,),Slider(id="Temperature",label="Temperature",initial=0.5,min=0,max=2,step=0.1,),Slider(id="MaxTokens",label="MaxTokens",initial=1000,min=1000,max=3000,step=100,),Switch(id="Streaming", label="Stream Tokens", initial=True),]).send()cl.user_session.set("settings", settings)content = "你好,我是泰山AI智能客服,有什么可以帮助您吗?"msg = cl.Message(content=content)await msg.send()@cl.on_message
async def on_message(message: cl.Message):images = [file for file in message.elements if "image" in file.mime]msg = cl.Message(content="")await msg.send()tool_res = await tool(images, message.content)await msg.stream_token(tool_res)await msg.update()async def on_message1(message: cl.Message):settings = cl.user_session.get("settings")streaming = settings['Streaming']images = [file for file in message.elements if "image" in file.mime]msg = cl.Message(content="")await msg.send()tool_res = await tool(images)elements = []if tool_res:messages = [{"role": "user","content": [{"type": "text", "text": f"{tool_res},将内容格式化为xx年纪xx科目输出"}],}]response = await client.chat.completions.create(model=settings['Model'],messages=messages,temperature=settings['Temperature'],max_tokens=int(settings['MaxTokens']),stream=streaming)if streaming:async for part in response:if token := part.choices[0].delta.content or "":await msg.stream_token(token)msg.elements = elementselse:if token := response.choices[0].message.content or "":await msg.stream_token(token)else:await msg.stream_token("不能识别")await msg.update()

在项目根目录下创建fp.py文件,代码如下:

import os
import timefrom colorama import Fore
from paddlenlp import Taskflow
from paddleocr import PaddleOCRocr = PaddleOCR(use_angle_cls=True, lang="ch")# 获取当前脚本文件的目录
script_directory = os.path.dirname(os.path.abspath(__file__))# 构建 blank.jpg 的路径
blank_image_path = os.path.join(script_directory, "blank.jpg")def ocr_nlp_processor(text):"""将OCR和NLP结合处理的函数。返回:无,直接将识别结果写入到指定的输出文件中。"""schema = ['教育部审定', '年级', '出版社']# 初始化NLP任务docPromptTask = Taskflow("information_extraction", schema=schema)# 记录程序开始时间start_time = time.time()# 执行NLP任务nlp_result = docPromptTask(text)print('nlp_result', nlp_result)# 计算程序执行时间end_time = time.time()total_time_seconds = end_time - start_time# 打印文件处理完成的消息和运行总耗时print(Fore.GREEN + f"==> 本次NLP运行总耗时:{total_time_seconds:.2f} 秒")

运行应用程序

要启动 Chainlit 应用程序,请打开终端并导航到包含的目录app.py。然后运行以下命令:

 chainlit run app.py -w   
  • -w标志告知 Chainlit 启用自动重新加载,因此您无需在每次更改应用程序时重新启动服务器。您的聊天机器人 UI 现在应该可以通过http://localhost:8000访问。
  • 自定义端口可以追加--port 80

启动后界面如下:

在这里插入图片描述

  • 上传图片通过paddleocr识别到了图片中的文字信息,当然对于字体特别小的,可能会识别错误
  • 再使用paddlenlp框架提取中文本中你需要的信息即可

在这里插入图片描述

相关文章推荐

《Chainlit快速实现AI对话应用的界面定制化教程》
《Chainlit接入FastGpt接口快速实现自定义用户聊天界面》
《使用 Xinference 部署本地模型》
《Fastgpt接入Whisper本地模型实现语音输入》
《Fastgpt部署和接入使用重排模型bge-reranker》
《Fastgpt部署接入 M3E和chatglm2-m3e文本向量模型》
《Fastgpt 无法启动或启动后无法正常使用的讨论(启动失败、用户未注册等问题这里)》
《vllm推理服务兼容openai服务API》
《vLLM模型推理引擎参数大全》
《解决vllm推理框架内在开启多显卡时报错问题》
《Ollama 在本地快速部署大型语言模型,可进行定制并创建属于您自己的模型》

这篇关于Chainlit结合百度飞浆的ocr识别和nlp自然语言处理做图片文字信息提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138717

相关文章

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh