最优化方法Python计算:二次规划的拉格朗日算法

2024-09-05 08:20

本文主要是介绍最优化方法Python计算:二次规划的拉格朗日算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标函数为二次式,约束条件为线性式的最优化问题称为二次规划。其一般形式为
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A e q x − b e q = o A i q x − b i q ≥ o . \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{A}_{eq}\boldsymbol{x}-\boldsymbol{b}_{eq}=\boldsymbol{o}\\ \quad\quad\quad\quad\quad\boldsymbol{A}_{iq}\boldsymbol{x}-\boldsymbol{b}_{iq}\geq\boldsymbol{o} \end{cases}. minimize21xHx+cxs.t.  Aeqxbeq=oAiqxbiqo.
其中, H ∈ R n × n \boldsymbol{H}\in\text{R}^{n\times n} HRn×n对称, c ∈ R n \boldsymbol{c}\in\text{R}^n cRn A e q ∈ R l × n \boldsymbol{A}_{eq}\in\text{R}^{l\times n} AeqRl×n b e q ∈ R l \boldsymbol{b}_{eq}\in\text{R}^l beqRl A i q ∈ R m × n \boldsymbol{A}_{iq}\in\text{R}^{m\times n} AiqRm×n b i q ∈ R m \boldsymbol{b}_{iq}\in\text{R}^m biqRm
仅含等式约束的二次规划形如
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A x − b = o . ( 1 ) \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o} \end{cases}.\quad\quad(1) {minimize21xHx+cxs.t.  Axb=o.(1)
假定 H \boldsymbol{H} H对称正定, A ∈ R l × n \boldsymbol{A}\in\text{R}^{l\times n} ARl×n,rank A = l \boldsymbol{A}=l A=l。正定二次式 1 2 x ⊤ H x + c ⊤ x \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x} 21xHx+cx在凸集 Ω = { x ∣ A x − b = o } \Omega=\{\boldsymbol{x}|\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o}\} Ω={xAxb=o}上有唯一满足必要条件的KKT点 ( x 0 λ 0 ) \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix} (x0λ0)。为算得该KKT点,写出问题的拉格朗日函数
L ( x , λ ) = 1 2 x ⊤ H x + c ⊤ x − λ ⊤ ( A x − b ) . L(\boldsymbol{x},\boldsymbol{\lambda})=\frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}-\boldsymbol{\lambda}^\top(\boldsymbol{Ax}-\boldsymbol{b}). L(x,λ)=21xHx+cxλ(Axb).
关于 x \boldsymbol{x} x λ \boldsymbol{\lambda} λ的梯度为
∇ x L ( x , λ ) = H x + c − A ⊤ λ ∇ λ L ( x , λ ) = − A x + b \begin{array}{l} \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}\\ \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=-\boldsymbol{Ax}+\boldsymbol{b} \end{array} xL(x,λ)=Hx+cAλλL(x,λ)=Ax+b
∇ x L ( x , λ ) = o \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} xL(x,λ)=o ∇ λ L ( x , λ ) = o \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} λL(x,λ)=o,得线性方程组
{ H x + c − A ⊤ λ = o − A x + b = o , \begin{cases} \boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}=\boldsymbol{o}\\ -\boldsymbol{Ax}+\boldsymbol{b}=\boldsymbol{o} \end{cases}, {Hx+cAλ=oAx+b=o,
等价地表示为
( H − A ⊤ − A O ) ( x λ ) = ( − c − b ) . \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{x}\\\boldsymbol{\lambda}\end{pmatrix} =\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}. (HAAO)(xλ)=(cb).
系数矩阵 ( H − A ⊤ − A O ) \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix} (HAAO)称为拉格朗日矩阵。由 H \boldsymbol{H} H对称正定且rank A = l \boldsymbol{A}=l A=l的假设,拉格朗日矩阵可逆,设
( H − A ⊤ − A O ) − 1 = ( Q − R ⊤ − R S ) , \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}^{-1}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}, (HAAO)1=(QRRS),
根据
( H − A ⊤ − A O ) ( Q − R ⊤ − R S ) = I \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}=\boldsymbol{I} (HAAO)(QRRS)=I
算得
{ H Q + A ⊤ R = I − H R ⊤ − A ⊤ S = O − A Q = O A R ⊤ = I \begin{cases} \boldsymbol{HQ}+\boldsymbol{A}^\top\boldsymbol{R}=\boldsymbol{I}\\ -\boldsymbol{H}\boldsymbol{R}^\top-\boldsymbol{A}^\top\boldsymbol{S}=\boldsymbol{O}\\ -\boldsymbol{AQ}=\boldsymbol{O}\\ \boldsymbol{AR}^\top=\boldsymbol{I} \end{cases} HQ+AR=IHRAS=OAQ=OAR=I
由于 A \boldsymbol{A} A行满秩,故 A H − 1 A ⊤ \boldsymbol{AH}^{-1}\boldsymbol{A}^\top AH1A可逆。 ( A H − 1 A ⊤ ) − 1 A H − 1 (\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\boldsymbol{AH}^{-1} (AH1A)1AH1 A ⊤ \boldsymbol{A}^\top A的伪逆。解上列连立式得
{ S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{cases}\boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\\boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\\boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R}\end{cases} S=(AH1A)1R=SAH1Q=H1H1AR
于是,二次规划(1)的KKT点
( x 0 λ 0 ) = ( Q − R ⊤ − R S ) ( − c − b ) = ( − Q c + R ⊤ b R c − S b ) . \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}=\begin{pmatrix}-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\\boldsymbol{Rc}-\boldsymbol{Sb} \end{pmatrix}. (x0λ0)=(QRRS)(cb)=(Qc+RbRcSb).
下列代码实现求解等式约束二次规划(1)的拉格朗日算法。

import numpy as np										#导入numpy
def qlag(H, A, b, c):H1 = np.linalg.inv(H)								#H的逆阵S = -np.linalg.inv(np.matmul(np.matmul(A, H1), A.T))R = -np.matmul(np.matmul(S, A), H1)Q = H1 - np.matmul(np.matmul(H1, A.T), R)x0 = -np.matmul(Q, c) + np.matmul(R.T, b)			#最优解lamd0 = np.matmul(R, c) - np.matmul(S, b)			#拉格朗日乘子return x0, lamd0

程序的第2~9行定义的函数qlag实现拉格朗日算法。qlag的4个参数H,A,b和c分别表示二次规划(1)中的正定矩阵 H \boldsymbol{H} H,行满秩阵 A \boldsymbol{A} A,向量 b \boldsymbol{b} b c \boldsymbol{c} c
函数体内的第3行调用numpy.linalg的inv函数计算 H \boldsymbol{H} H的逆阵 H − 1 \boldsymbol{H}^{-1} H1,赋予H1。第4~6行分别计算
S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{array}{l} \boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\ \boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\ \boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R} \end{array} S=(AH1A)1R=SAH1Q=H1H1AR
并赋予S,R和Q。第7、8行分别计算最优解和对应的拉格朗日乘子
x 0 = − Q c + R ⊤ b λ 0 = R c − S b \begin{array}{l} \boldsymbol{x}_0=-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\ \boldsymbol{\lambda}_0=\boldsymbol{Rc}-\boldsymbol{Sb} \end{array} x0=Qc+Rbλ0=RcSb
并赋予x0和lamd0。
例1用qlag函数求解下列二次规划
{ minimize x 1 2 + 2 x 2 2 + x 3 2 − 2 x 1 x 2 + x 3 s.t.   x 1 + x 2 + x 3 = 4 2 x 1 − x 2 + x 3 = 2 . \begin{cases} \text{minimize}\quad x_1^2+2x_2^2+x_3^2-2x_1x_2+x_3\\ \text{s.t.\ \ }\quad\quad\quad x_1+x_2+x_3=4\\ \quad\quad\quad\quad\quad 2x_1-x_2+x_3=2 \end{cases}. minimizex12+2x22+x322x1x2+x3s.t.  x1+x2+x3=42x1x2+x3=2.
:本问题中,
H = ( 2 − 2 0 − 2 4 0 0 0 2 ) , A = ( 1 1 1 2 − 1 1 ) , b = ( 4 2 ) , c = ( 0 0 1 ) \boldsymbol{H}=\begin{pmatrix}2&-2&0\\-2&4&0\\0&0&2\end{pmatrix},\boldsymbol{A}=\begin{pmatrix}1&1&1\\2&-1&1\end{pmatrix},\boldsymbol{b}=\begin{pmatrix}4\\2\end{pmatrix},\boldsymbol{c}=\begin{pmatrix}0\\0\\1\end{pmatrix} H= 220240002 ,A=(121111),b=(42),c= 001
下列代码利用这些数据进行计算。

import numpy as np					#导入numpy
from fractions import Fraction as F	#设置输出格式
np.set_printoptions(formatter={'all':lambda x:str(F(x).limit_denominator())})
H = np.array([[2, -2, 0],			#矩阵H[-2, 4, 0],[0, 0, 2]])
A = np.array([[1, 1, 1],			#矩阵A[2, -1, 1]])
b = np.array([4, 2])				#向量b
c = np.array([0, 0, 1])				#向量c
print(qlag(H, A, b, c))				#计算最优解

程序的第2~4行设置数组输出格式为有理数。5~11设置表示本二次规划问题的矩阵H、A和向量b、c。第12行调用函数qlag,计算本二次规划最优解。运行程序,输出

(array([21/11, 43/22, 3/22]), array([29/11, -15/11]))

意味着最优解 x 0 = ( 21 11 43 22 3 22 ) \boldsymbol{x}_0=\begin{pmatrix}\frac{21}{11}\\\frac{43}{22}\\\frac{3}{22}\end{pmatrix} x0= 11212243223 ,对应的拉格朗日乘子 λ 0 = ( 29 11 − 15 11 ) \boldsymbol{\lambda}_0=\begin{pmatrix}\frac{29}{11}\\-\frac{15}{11}\end{pmatrix} λ0=(11291115)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

这篇关于最优化方法Python计算:二次规划的拉格朗日算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138430

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参