最优化方法Python计算:二次规划的拉格朗日算法

2024-09-05 08:20

本文主要是介绍最优化方法Python计算:二次规划的拉格朗日算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标函数为二次式,约束条件为线性式的最优化问题称为二次规划。其一般形式为
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A e q x − b e q = o A i q x − b i q ≥ o . \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{A}_{eq}\boldsymbol{x}-\boldsymbol{b}_{eq}=\boldsymbol{o}\\ \quad\quad\quad\quad\quad\boldsymbol{A}_{iq}\boldsymbol{x}-\boldsymbol{b}_{iq}\geq\boldsymbol{o} \end{cases}. minimize21xHx+cxs.t.  Aeqxbeq=oAiqxbiqo.
其中, H ∈ R n × n \boldsymbol{H}\in\text{R}^{n\times n} HRn×n对称, c ∈ R n \boldsymbol{c}\in\text{R}^n cRn A e q ∈ R l × n \boldsymbol{A}_{eq}\in\text{R}^{l\times n} AeqRl×n b e q ∈ R l \boldsymbol{b}_{eq}\in\text{R}^l beqRl A i q ∈ R m × n \boldsymbol{A}_{iq}\in\text{R}^{m\times n} AiqRm×n b i q ∈ R m \boldsymbol{b}_{iq}\in\text{R}^m biqRm
仅含等式约束的二次规划形如
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A x − b = o . ( 1 ) \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o} \end{cases}.\quad\quad(1) {minimize21xHx+cxs.t.  Axb=o.(1)
假定 H \boldsymbol{H} H对称正定, A ∈ R l × n \boldsymbol{A}\in\text{R}^{l\times n} ARl×n,rank A = l \boldsymbol{A}=l A=l。正定二次式 1 2 x ⊤ H x + c ⊤ x \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x} 21xHx+cx在凸集 Ω = { x ∣ A x − b = o } \Omega=\{\boldsymbol{x}|\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o}\} Ω={xAxb=o}上有唯一满足必要条件的KKT点 ( x 0 λ 0 ) \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix} (x0λ0)。为算得该KKT点,写出问题的拉格朗日函数
L ( x , λ ) = 1 2 x ⊤ H x + c ⊤ x − λ ⊤ ( A x − b ) . L(\boldsymbol{x},\boldsymbol{\lambda})=\frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}-\boldsymbol{\lambda}^\top(\boldsymbol{Ax}-\boldsymbol{b}). L(x,λ)=21xHx+cxλ(Axb).
关于 x \boldsymbol{x} x λ \boldsymbol{\lambda} λ的梯度为
∇ x L ( x , λ ) = H x + c − A ⊤ λ ∇ λ L ( x , λ ) = − A x + b \begin{array}{l} \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}\\ \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=-\boldsymbol{Ax}+\boldsymbol{b} \end{array} xL(x,λ)=Hx+cAλλL(x,λ)=Ax+b
∇ x L ( x , λ ) = o \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} xL(x,λ)=o ∇ λ L ( x , λ ) = o \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} λL(x,λ)=o,得线性方程组
{ H x + c − A ⊤ λ = o − A x + b = o , \begin{cases} \boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}=\boldsymbol{o}\\ -\boldsymbol{Ax}+\boldsymbol{b}=\boldsymbol{o} \end{cases}, {Hx+cAλ=oAx+b=o,
等价地表示为
( H − A ⊤ − A O ) ( x λ ) = ( − c − b ) . \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{x}\\\boldsymbol{\lambda}\end{pmatrix} =\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}. (HAAO)(xλ)=(cb).
系数矩阵 ( H − A ⊤ − A O ) \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix} (HAAO)称为拉格朗日矩阵。由 H \boldsymbol{H} H对称正定且rank A = l \boldsymbol{A}=l A=l的假设,拉格朗日矩阵可逆,设
( H − A ⊤ − A O ) − 1 = ( Q − R ⊤ − R S ) , \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}^{-1}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}, (HAAO)1=(QRRS),
根据
( H − A ⊤ − A O ) ( Q − R ⊤ − R S ) = I \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}=\boldsymbol{I} (HAAO)(QRRS)=I
算得
{ H Q + A ⊤ R = I − H R ⊤ − A ⊤ S = O − A Q = O A R ⊤ = I \begin{cases} \boldsymbol{HQ}+\boldsymbol{A}^\top\boldsymbol{R}=\boldsymbol{I}\\ -\boldsymbol{H}\boldsymbol{R}^\top-\boldsymbol{A}^\top\boldsymbol{S}=\boldsymbol{O}\\ -\boldsymbol{AQ}=\boldsymbol{O}\\ \boldsymbol{AR}^\top=\boldsymbol{I} \end{cases} HQ+AR=IHRAS=OAQ=OAR=I
由于 A \boldsymbol{A} A行满秩,故 A H − 1 A ⊤ \boldsymbol{AH}^{-1}\boldsymbol{A}^\top AH1A可逆。 ( A H − 1 A ⊤ ) − 1 A H − 1 (\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\boldsymbol{AH}^{-1} (AH1A)1AH1 A ⊤ \boldsymbol{A}^\top A的伪逆。解上列连立式得
{ S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{cases}\boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\\boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\\boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R}\end{cases} S=(AH1A)1R=SAH1Q=H1H1AR
于是,二次规划(1)的KKT点
( x 0 λ 0 ) = ( Q − R ⊤ − R S ) ( − c − b ) = ( − Q c + R ⊤ b R c − S b ) . \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}=\begin{pmatrix}-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\\boldsymbol{Rc}-\boldsymbol{Sb} \end{pmatrix}. (x0λ0)=(QRRS)(cb)=(Qc+RbRcSb).
下列代码实现求解等式约束二次规划(1)的拉格朗日算法。

import numpy as np										#导入numpy
def qlag(H, A, b, c):H1 = np.linalg.inv(H)								#H的逆阵S = -np.linalg.inv(np.matmul(np.matmul(A, H1), A.T))R = -np.matmul(np.matmul(S, A), H1)Q = H1 - np.matmul(np.matmul(H1, A.T), R)x0 = -np.matmul(Q, c) + np.matmul(R.T, b)			#最优解lamd0 = np.matmul(R, c) - np.matmul(S, b)			#拉格朗日乘子return x0, lamd0

程序的第2~9行定义的函数qlag实现拉格朗日算法。qlag的4个参数H,A,b和c分别表示二次规划(1)中的正定矩阵 H \boldsymbol{H} H,行满秩阵 A \boldsymbol{A} A,向量 b \boldsymbol{b} b c \boldsymbol{c} c
函数体内的第3行调用numpy.linalg的inv函数计算 H \boldsymbol{H} H的逆阵 H − 1 \boldsymbol{H}^{-1} H1,赋予H1。第4~6行分别计算
S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{array}{l} \boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\ \boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\ \boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R} \end{array} S=(AH1A)1R=SAH1Q=H1H1AR
并赋予S,R和Q。第7、8行分别计算最优解和对应的拉格朗日乘子
x 0 = − Q c + R ⊤ b λ 0 = R c − S b \begin{array}{l} \boldsymbol{x}_0=-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\ \boldsymbol{\lambda}_0=\boldsymbol{Rc}-\boldsymbol{Sb} \end{array} x0=Qc+Rbλ0=RcSb
并赋予x0和lamd0。
例1用qlag函数求解下列二次规划
{ minimize x 1 2 + 2 x 2 2 + x 3 2 − 2 x 1 x 2 + x 3 s.t.   x 1 + x 2 + x 3 = 4 2 x 1 − x 2 + x 3 = 2 . \begin{cases} \text{minimize}\quad x_1^2+2x_2^2+x_3^2-2x_1x_2+x_3\\ \text{s.t.\ \ }\quad\quad\quad x_1+x_2+x_3=4\\ \quad\quad\quad\quad\quad 2x_1-x_2+x_3=2 \end{cases}. minimizex12+2x22+x322x1x2+x3s.t.  x1+x2+x3=42x1x2+x3=2.
:本问题中,
H = ( 2 − 2 0 − 2 4 0 0 0 2 ) , A = ( 1 1 1 2 − 1 1 ) , b = ( 4 2 ) , c = ( 0 0 1 ) \boldsymbol{H}=\begin{pmatrix}2&-2&0\\-2&4&0\\0&0&2\end{pmatrix},\boldsymbol{A}=\begin{pmatrix}1&1&1\\2&-1&1\end{pmatrix},\boldsymbol{b}=\begin{pmatrix}4\\2\end{pmatrix},\boldsymbol{c}=\begin{pmatrix}0\\0\\1\end{pmatrix} H= 220240002 ,A=(121111),b=(42),c= 001
下列代码利用这些数据进行计算。

import numpy as np					#导入numpy
from fractions import Fraction as F	#设置输出格式
np.set_printoptions(formatter={'all':lambda x:str(F(x).limit_denominator())})
H = np.array([[2, -2, 0],			#矩阵H[-2, 4, 0],[0, 0, 2]])
A = np.array([[1, 1, 1],			#矩阵A[2, -1, 1]])
b = np.array([4, 2])				#向量b
c = np.array([0, 0, 1])				#向量c
print(qlag(H, A, b, c))				#计算最优解

程序的第2~4行设置数组输出格式为有理数。5~11设置表示本二次规划问题的矩阵H、A和向量b、c。第12行调用函数qlag,计算本二次规划最优解。运行程序,输出

(array([21/11, 43/22, 3/22]), array([29/11, -15/11]))

意味着最优解 x 0 = ( 21 11 43 22 3 22 ) \boldsymbol{x}_0=\begin{pmatrix}\frac{21}{11}\\\frac{43}{22}\\\frac{3}{22}\end{pmatrix} x0= 11212243223 ,对应的拉格朗日乘子 λ 0 = ( 29 11 − 15 11 ) \boldsymbol{\lambda}_0=\begin{pmatrix}\frac{29}{11}\\-\frac{15}{11}\end{pmatrix} λ0=(11291115)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

这篇关于最优化方法Python计算:二次规划的拉格朗日算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138430

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注