CNN-LSTM用于时间序列预测,发二区5分+没问题!

2024-09-05 04:52

本文主要是介绍CNN-LSTM用于时间序列预测,发二区5分+没问题!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了进一步提高时序预测的性能,研究者们组合了CNN和LSTM的特点,提出了CNN-LSTM混合架构。

这种架构因为独特的结构设计,能同时处理时空数据、提取丰富的特征、并有效解决过拟合问题,实现对时间序列数据的高效、准确预测,远超传统方法。

因此,它已经成为我们应对时序预测任务离不开的模型,有关CNN-LSTM的研究也成了当下热门主题之一,高质量论文频发。

为了方便大家了解CNN-LSTM的最新进展与创新思路,我这边整理了8篇今年最新的相关论文,希望可以给各位的论文添砖加瓦。

论文原文合集需要的同学看文末

Harnessing a Hybrid CNN-LSTM Model for Portfolio Performance: A Case Study on Stock Selection and Optimization

方法:论文提出了一种名为CNN-LSTM+MV的金融投资决策方法。该方法通过将卷积神经网络(CNN)和长短期记忆网络(LSTM)的优势相结合,实现了对股票的选择预测和通过均值方差(MV)模型进行优化组合形成的综合框架。

创新点:

  • 引入了一种称为CNN-LSTM+MV的方法,结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的优点,用于股票选择和最优组合构建。

  • 提出了一种综合性能评估的深度学习模型,该模型在预测金融时间序列方面优于单一模型。

  • 利用MV模型和预测值实现了有利的回报、风险和风险回报指标,提高了预测准确性和组合绩效。

Analyzing Financial Market Trends in Cryptocurrency and Stock Prices Using CNN-LSTM Models

方法:论文介绍了CNN-LSTM模型的结构和功能,以及如何利用这种深度学习模型来处理时间序列数据,捕捉其中的长期依赖关系,并进行有效的价格预测。通过具体的实证分析,论证了使用深度学习模型CNN-LSTM预测比特币价格的有效性,并提出了未来研究和优化策略的方向。

创新点:

  • 引入更多的变量。研究表明,市场状况和宏观金融状况等因素也值得考虑,可以通过增加这些变量来提高预测准确性。

  • 关注特征处理和权重分配。通过有效的方法对不同数据的权重进行缩放,可以有效提高预测准确性。同时,在混合模型中,通过采用适当的权重分配,可以充分利用单个模型的优势。

Multi‑step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network‑Long Short‑Term Memory (CNN‑LSTM) model enhanced by Boruta‑XGBoost feature selection algorithm

方法:论文使用现代深度学习技术开发了一个基于CNN-LSTM框架的预测模型,用于预测河流中的电导率(EC)。通过与传统的机器学习方法(如多层感知器神经网络MLP、K最近邻KNN和极端梯度提升XGBoost)进行比较,展示了CNN-LSTM模型在预测澳大利亚两条河流(Albert River和Barratta Creek)的电导率方面的优越性能。

创新点:

  • 提出了一种新颖的混合Boruta-XGB-CNN-LSTM模型,用于有效预测河流的EC值。

  • 该模型在训练期间和测试期间的预测性能优于其他比较模型,具有更高的准确性和较低的误差。

  • 通过优化输入特征和利用CNN-LSTM架构,提高了水质预测模型的性能和适用性。

Deep Learning Approaches for Water Stress Forecasting in Arboriculture Using Time Series of Remote Sensing Images: Comparative Study between ConvLSTM and CNN-LSTM Models

方法:论文使用深度学习(DL)模型进行时间序列预测,特别是在作物水分胁迫预测方面。文中比较了两种深度学习模型——ConvLSTM和CNN-LSTM——在利用遥感数据进行水分胁迫预测方面的性能。

创新点:

  • 引入了ConvLSTM和CNN-LSTM两种深度学习模型,用于农作物水分胁迫的时空预测。

  • 提出了一种数据预处理的方法,将遥感图像转换为数字矩阵,并将数据集划分为训练集和测试集。

  • 对ConvLSTM和CNN-LSTM两种模型进行了详细的性能比较,发现CNN-LSTM在长序列情况下具有更高的准确性。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“混合时序”获取全部论文

码字不易,欢迎大家点赞评论收藏

这篇关于CNN-LSTM用于时间序列预测,发二区5分+没问题!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137997

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异