pytorch+深度学习实现图像的神经风格迁移

2024-09-05 02:36

本文主要是介绍pytorch+深度学习实现图像的神经风格迁移,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文的完整代码和部署教程已上传至本人的GitHub仓库,欢迎各位朋友批评指正!

1.各代码文件详解

1.1 train.py

train.py 文件负责训练神经风格迁移模型。

  • 加载内容和风格图片:使用 utils.load_image 函数加载并预处理内容和风格图片。
  • 初始化生成图像:将内容图像加上随机噪声作为初始生成图像。
  • 加载模型:实例化并加载神经风格迁移模型。
  • 设置优化器和损失函数:使用 Adam 优化器和均方误差损失函数。
  • 定义内容损失和风格损失的计算函数:包括 _compute_content_loss, compute_content_loss, gram_matrix, _compute_style_loss, compute_style_loss, 和 total_loss
  • 计算目标内容图片和风格图片的特征:通过模型提取内容和风格特征。
  • 创建保存生成图片的文件夹:检查并创建输出目录。
  • 训练过程:使用 tqdm 显示训练进度条,进行多轮训练,每轮训练后保存生成的图片。

1.2 model.py

model.py 文件定义了神经风格迁移模型。

  • 定义获取 VGG19 模型的函数get_vgg19_model 函数从预训练的 VGG19 模型中提取指定层。
  • 定义神经风格迁移模型类NeuralStyleTransferModel 类继承自 nn.Module,包含模型的初始化和前向传播方法。

1.3 utils.py

utils.py 文件包含图像处理的辅助函数。

  • 定义图像归一化和反归一化函数normalizationdenormalization 函数对图像进行归一化和反归一化处理。
  • 定义加载和保存图像的函数load_image 函数加载并预处理图像,save_image 函数保存生成的图像。

1.4 settings.py

settings.py 文件包含训练过程中的各种配置参数。

  • 定义各种配置参数:包括内容图像路径、风格图像路径、输出目录、图像宽度和高度、学习率、训练轮数、每轮训练步数、内容损失和风格损失的权重因子、内容层和风格层的配置。

2.环境要求

  • 操作系统:Windows, macOS, 或 Linux
  • Python 版本:Python 3.6 及以上
  • 依赖库
    • torch:用于深度学习模型的构建和训练
    • torchvision:用于图像处理和预训练模型
    • PIL (或 Pillow):用于图像加载和保存
    • tqdm:用于显示训练进度条

3.结果展示

示例一

风格图片

在这里插入图片描述

原始图片

在这里插入图片描述

迁移结果

在这里插入图片描述

示例二

风格图片

在这里插入图片描述

原始图片

在这里插入图片描述

迁移结果

在这里插入图片描述

示例三

风格图片

在这里插入图片描述

原始图片在这里插入图片描述
迁移结果

在这里插入图片描述

本文参考了这一项目,在此深表感谢!这一项目使用的是tensorflow,本文采用的是当今更常用的pytorch。另外在学习过程中阅读了这一教程,这个教程也是采用了tensorflow,需要先用一个大数据集训练模型,但由于环境版本过旧,代码无法成功运行,将tensorflow改为pytorch后(代码在这个仓库),发现训练时间过长,且迁移效果很差,遂不采用这种思路,转为神经风格迁移,直接学习风格图片的特征并运用到原始图片上,训练速度很快且效果较好。

这篇关于pytorch+深度学习实现图像的神经风格迁移的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137723

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J