[从零开始]使用ImageNet数据集实验

2024-09-05 01:38

本文主要是介绍[从零开始]使用ImageNet数据集实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

记录一下最近开始的ImageNet学习,论文中虽然提到了很多,也开源了训练代码,但是多数情况用自己的代码在相同的Condition就是难以复现,记录一点点目前的。

ImageNet,yyds

数据

数据下载源于官网 http://image-net.org/download,需要注册edu邮箱,一些参考:
下载imagenet2012数据集,以及label说明

下载下来的标签有不对应的情况,参考网上说的重新下一份caffe版本的,地址如下

caffe_ilsvrc12.tar.gz http://dl.caffe.berkeleyvision.org/

数据解压,python版本和shell版本

import osn = 0
unzip = os.listdir('./images')
print(len(unzip))
for i in os.listdir('./tars'):if('.tar' in i):if(i[:-4] in unzip):continuepath = os.path.join(os.getcwd(), 'images', i[:-4])tar = os.path.join(os.getcwd(), 'tars', i)os.system('mkdir {}'.format(path))os.system('tar -xvf {} -C {}'.format(tar, path))print(path)n += 1
print(n)
base=/path/to/data
for i in `ls *.tar`
dopath=$base${i%.tar}mkdir $pathtar -xvf $i -C $pathecho $path
done

训练

ImageNet的准确率在不同的训练策略下结果差异还是挺大的,参考了几篇论文的训练策略尝试复现结果。
部分训练代码已开源@git。

以下准确率是基于验证集(Validation Set)的结果

1. 训练环境

  • GPU: 32GB Tesla V100 * 4
  • Lib: pytorch 1.6

2. Table

一些固定setting,没有特殊说明则follow以下:

数据预处理,采用的albumentation

import albumentations as A
from albumentations.pytorch import ToTensorV2
# train
A.Compose([A.RandomResizedCrop(height=224, width=224),A.HorizontalFlip(p=0.5),A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),ToTensorV2()])
# val
A.Compose([A.Resize(height=256, width=256),A.CenterCrop(height=224, width=224),A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),ToTensorV2()])

采用的主干模型为Resnet50,由于采用了batch_size=256,没有使用sync_bn,pytorch1.6提供了混合精度训练(AMP),几行代码就能转换,极大节省了显存和训练时间。

# 一些固定setting
batch_size: 256
init_lr: 0.1
schedule: cos
warm_up: 10
total_epoch: 120
optimizer: SGD
weight_decay: 5e-4
momentum: 0.9
model: resnet50
sync_bn: False
amp: True
2.1 混合精度训练(AMP)

首先比较了混合精度训练,发现差异不大所以后面就用AMP来节约时间,用了sync_bn

假装有个Table结果被删掉了,找不到了,但是精度差不多

2.2 Sync_BN

比较了一下sync_bn的影响,顺便跑了LabelSmoothing

LossSchedulesync_bnbest_accbest_epochtotal_epochtime_per_epoch
CEcos, warm 10w76.04120120~720s
CEcos, warm 10wo76.22120120~540s
LS(0.1)cos, warm 10wo76.35120120/
LS(0.2)cos, warm 10wo76.45120120/
2.3 数据增强

因为有一篇论文提到了ColorJitter(CJ),故比较了一下使用增强的效果。

# 在train中加入
A.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0, always_apply=False, p=0.5)

提升没有很明显。(那篇论文里的Baseline有77.5)

LossScheduleCJbest_accbest_epochtotal_epochtime_per_epoch
CEcos, warm 10w76.14120120~550s
2.4 更长时间的训练

大多数的训练策略都是以100~120epoch来训练ImageNet,但是从前面的结果来看全都是在最后一轮取得的最佳准确率,这与cos学习率衰减也有一定关系,学习率总是在最后几轮降低很快,准确率也主要在最后几轮提升。那么采用更多轮次的训练是否会有所提升。以下比较了300epoch和250epoch不同的训练策略。

LossSchedulebest_accbest_epochtotal_epoch
CEcos, warm 576.79299300
CEstep [75, 150, 225]76.01248250
2.5 Debug
  • batch_size和weight_decay调整
    前面说batch_size 256实际上是单卡256,而用了4张卡,因此实际上的batch_size计算应该为4 * 256,因此重新用了单卡batch_size 256来训练,时间从2天变成了5天,跑了250epoch,另外weight_decay 从5e-4变成了1e-4,结果上来看相比前面的有一点提升,但是具体是因为batch_size的变化还是weight_decay也不好说明,从跑的另一个实验来说提升是很明显的。单卡训练也避免了sync_bn的问题。结果基本与目前的论文结果能对应上。
LossSchedulebest_accbest_epochtotal_epoch
CEstep [75, 150, 225]76.32161250

Conclusion

以上尝试了几种ImageNet的训练策略,参考了一些论文的Setting,Baseline结果与大多数的论文的Baseline差不多(76.3)。但是从2.4可以看出不同的策略下结果差异很大,由于硬件条件有限,没有尝试的bags of tricks。训练次数小的时候(epoch in [90, 120]),似乎采用step衰减更有效。更长的时间cos衰减可能收敛效果更好。没有得到理想的结果,慢慢踩坑。

实验并不充分,还有一些问题需要解决,等有新的再补充。

Continue…

Code:https://github.com/Kurumi233/OnlineLabelSmoothing

这篇关于[从零开始]使用ImageNet数据集实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137612

相关文章

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

mybatis中resultMap的association及collectio的使用详解

《mybatis中resultMap的association及collectio的使用详解》MyBatis的resultMap定义数据库结果到Java对象的映射规则,包含id、type等属性,子元素需... 目录1.reusltmap的说明2.association的使用3.collection的使用4.总

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder