C++笔记17•数据结构:二叉搜索树(K模型/KV模型实现)•

2024-09-04 23:04

本文主要是介绍C++笔记17•数据结构:二叉搜索树(K模型/KV模型实现)•,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉搜索树

1.二叉搜索树

1. 二叉搜索树的查找
a 、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b 、最多查找高度次,走到到空,还没找到,这个值不存在。
2. 二叉搜索树的插入
插入的具体过程如下:
a. 树为空,则直接新增节点,赋值给 root 指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点
3.二叉搜索树的删除
首先查找元素是否在二叉搜索树中,如果不存在,则返回 , 否则要删除的结点可能分下面四种情 况:
a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点
看起来有待删除节点有 4 中情况,实际情况 a 可以与情况 b 或者 c 合并起来,因此真正的删除过程如下:
情况 b :删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点 -- 直接删除
情况 c :删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点 -- 直接删除
情况 d:在它的右子树中寻找中序下的第一个结点( 也就是删除节点的左子树中最大的值或者删除节点的右子树中最小的值 ),用它的值填补到被删除节点 中,再来处理该结点的删除问题 -- 替换法删除

删除9、16、3、10节点

其中:节点9和16可以直接删除。3、10节点需要用替换法删除

节点3:需要用2节点或7节点来替换

节点10:需要用9节点或12节点来替换

 2.二叉搜索树-K模型

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;//二叉搜索树BinarySearchTree
//struct BinarySearchTreeNodetemplate<class K>
struct BSTreeNode
{BSTreeNode<K>* _left;//一定不要写成BSTreeNode*<K>  _left;  这样编译器无法识别BSTreeNode<K>* _right;K _key;BSTreeNode(const K& key):_left(nullptr), _right(nullptr), _key(key){}
};template<class K>
class BSTree
{typedef struct BSTreeNode<K> Node;
public:bool insert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}//准备从parent插入Node* node = new Node(key);if (parent->_key > key)//插左子树{parent->_left = node;}else//插右子树{parent->_right = node;}//cur = new Node(key);//if (parent->_key > key)//插左子树//{//	parent->_left = cur;//}//else//插右子树//{//	parent->_right = cur;//}return true;}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << " ";_Inorder(root->_right);}void Inorder(){_Inorder(_root);cout << endl;}void find(const K& key){Node* cur = _root;while (cur){if (cur->_key == key){cout << "找到了!" << endl;return;}else if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}}cout << "找不到!" << endl;return;}bool erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else   //找到了开始删除  1.左为空  2.右为空  3.左右都不为空{if (cur->_left == nullptr) //1.左为空{if (cur == _root) //判断删除的节点是否是根节点 根的左为空 让根的右成为根就可以了 _root = cur->_right{_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else     //parent->_right == cur{parent->_right = cur->_right;}}delete cur;                   //不要忘记手动释放节点}else if (cur->_right == nullptr)//2.右为空{if (cur == _root)//判断删除的节点是否是根节点 根的右为空 让根的左成为根就可以了 _root = cur->_left{_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else   //parent->_right == cur{parent->_right = cur->_left;}}delete cur;}else   //3.左右都不为空 用删除节点的左子树中最大的值或者删除节点的右子树中最小的值  此处用删除节点的左子树最大值{//Node* Lbignode_pre = nullptr;//不能置空 后面如果直接跳出循环Lbignode_pre还是空,会出bug;Lbignode_pre->_right  空指针不能这样访问Node* Lbignode_pre = cur;Node* Lbignode = cur->_left;while (Lbignode->_right){Lbignode_pre = Lbignode;Lbignode = Lbignode->_right;}cur->_key = Lbignode->_key;//替换节点中的值,删除cur转换为删除Lbignodeif (Lbignode == Lbignode_pre->_right){Lbignode_pre->_right = Lbignode->_left;}else{Lbignode_pre->_left = Lbignode->_left;}delete Lbignode;}return true;}}return false;}private:Node* _root = nullptr;
};void test1()
{BSTree<int> bt;bt.insert(1);bt.insert(10);bt.insert(2);bt.insert(5);bt.insert(4);bt.insert(6);bt.insert(8);bt.insert(9);bt.insert(7);bt.insert(3);bt.insert(0);bt.insert(0);bt.Inorder();bt.find(8);bt.find(20);bt.erase(20);bt.erase(0);bt.erase(10);bt.erase(8);bt.Inorder();}
void test2()
{char arr[] = { 10,9,8,7,6,5,4,3,2,1,0 };BSTree<int> bt;for (auto e : arr){bt.insert(e);}cout << "插入:" << endl;bt.Inorder();cout << "依次删除:" << endl;for (auto e : arr){bt.erase(e);bt.Inorder();}
}
int main()
{//test1();test2();return 0;}

 3.二叉搜索树-KV模型

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
#include <string>
using namespace std;//二叉搜索树BinarySearchTree
//struct BinarySearchTreeNodetemplate<class K,class V>
struct BSTreeNode
{BSTreeNode<K,V>* _left;//一定不要写成BSTreeNode*<K>  _left;  这样编译器无法识别BSTreeNode<K,V>* _right;K _key;V _value;BSTreeNode(const K& key, const V& value):_left(nullptr), _right(nullptr), _key(key), _value(value){}
};template<class K,class V>
class BSTree
{typedef struct BSTreeNode<K,V> Node;
public:bool insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key, value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}//准备从parent插入Node* node = new Node(key, value);if (parent->_key > key)//插左子树{parent->_left = node;}else//插右子树{parent->_right = node;}//cur = new Node(key, value);//if (parent->_key > key)//插左子树//{//	parent->_left = cur;//}//else//插右子树//{//	parent->_right = cur;//}return true;}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << ":"<<root->_value << endl;_Inorder(root->_right);}void Inorder(){_Inorder(_root);cout << endl;}Node* find(const K& key){Node* cur = _root;while (cur){if (cur->_key == key){//cout << "找到了!" << endl;return cur;}else if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}}//cout << "找不到!" << endl;return nullptr;}bool erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else   //找到了开始删除  1.左为空  2.右为空  3.左右都不为空{if (cur->_left == nullptr) //1.左为空{if (cur == _root) //判断删除的节点是否是根节点 根的左为空 让根的右成为根就可以了 _root = cur->_right{_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else     //parent->_right == cur{parent->_right = cur->_right;}}delete cur;                   //不要忘记手动释放节点}else if (cur->_right == nullptr)//2.右为空{if (cur == _root)//判断删除的节点是否是根节点 根的右为空 让根的左成为根就可以了 _root = cur->_left{_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else   //parent->_right == cur{parent->_right = cur->_left;}}delete cur;}else   //3.左右都不为空 用删除节点的左子树中最大的值或者删除节点的右子树中最小的值  此处用删除节点的左子树最大值{//Node* Lbignode_pre = nullptr;不能置空 后面如果直接跳出循环Lbignode_pre还是空,会出bug;Lbignode_pre->_right  空指针不能这样访问Node* Lbignode_pre = cur;Node* Lbignode = cur->_left;while (Lbignode->_right){Lbignode_pre = Lbignode;Lbignode = Lbignode->_right;}cur->_key = Lbignode->_key;//替换节点中的值,删除cur转换为删除Lbignodeif (Lbignode == Lbignode_pre->_right){Lbignode_pre->_right = Lbignode->_left;}else{Lbignode_pre->_left = Lbignode->_left;}delete Lbignode;}return true;}}return false;}private:Node* _root = nullptr;
};void test1()
{BSTree<string,string> Dictionary;Dictionary.insert("apple", "苹果");Dictionary.insert("pear", "梨");Dictionary.insert("left", "左");Dictionary.insert("right", "右");string str;while (cin >> str){BSTreeNode<string, string>* ret = Dictionary.find(str);if(ret)cout << ret->_value << endl;elsecout << "词典没有此单词!" << endl;}}
void test2()
{string arr[] = { "徐香猕猴桃","葡萄", "梨", "哈密瓜", "西瓜", "苹果", "橙子", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉"};BSTree<string, int> countfruit;BSTreeNode<string, int>* ret =nullptr;for (auto e : arr){//BSTreeNode<string, int>* ret =countfruit.find(e);ret = countfruit.find(e);if (ret == nullptr)countfruit.insert(e, 1);elseret->_value++;}delete ret;//这里可能会有双重释放节点 ret属于树节点 应在树中析构函数中进行节点的释放的管理,这里一般不需要自己手动释放,自己释放可能会遇到内存泄漏countfruit.Inorder();delete ret;
}
int main()
{//test1();test2();return 0;}

这篇关于C++笔记17•数据结构:二叉搜索树(K模型/KV模型实现)•的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137284

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库