SA(模拟退火)优化算法MATLAB源码详细中文注解

2024-09-04 18:32

本文主要是介绍SA(模拟退火)优化算法MATLAB源码详细中文注解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以优化SVM算法的参数c和g为例,对SA(模拟退火)算法MATLAB源码进行了逐行中文注解。
完整程序和示例文件地址:http://download.csdn.net/detail/u013337691/9644107
链接:http://pan.baidu.com/s/1i5G0gPB 密码:4ge8

% 使用模拟退火法寻优SVM中的参数c和g
% 使用METROPOLIS接受准则
%% 清空环境
tic % 计时
clear
clc
close all
format compact
%% 数据提取
% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量
load wine.mat
% 选定训练集和测试集
% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集
train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];
% 相应的训练集的标签也要分离出来
train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
% 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集
test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];
% 相应的测试集的标签也要分离出来
test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];
%% 数据预处理
% 数据预处理,将训练集和测试集归一化到[0,1]区间
[mtrain,ntrain] = size(train_wine);
[mtest,ntest] = size(test_wine);dataset = [train_wine;test_wine];
% mapminmax为MATLAB自带的归一化函数
[dataset_scale,ps] = mapminmax(dataset',0,1);
dataset_scale = dataset_scale';train_wine = dataset_scale(1:mtrain,:);
test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );
%% SA算法主程序
lb=[0.01,0.01]; % 参数取值下界
ub=[100,100]; % 参数取值上界
% 冷却表参数
MarkovLength=100; % 马可夫链长度
DecayScale=0.85; % 衰减参数
StepFactor=0.2; % Metropolis步长因子
Temperature0=8; % 初始温度
Temperatureend=3; % 最终温度
Boltzmann_con=1; % Boltzmann常数
AcceptPoints=0.0; % Metropolis过程中总接受点
% 随机初始化参数
range=ub-lb;
Par_cur=rand(size(lb)).*range+lb; % 用Par_cur表示当前解
Par_best_cur=Par_cur; % 用Par_best_cur表示当前最优解
Par_best=rand(size(lb)).*range+lb; % 用Par_best表示冷却中的最好解
% 每迭代一次退火(降温)一次,直到满足迭代条件为止
t=Temperature0;
itr_num=0; % 记录迭代次数
while t>Temperatureenditr_num=itr_num+1;t=DecayScale*t; % 温度更新(降温)for i=1:MarkovLength% 在此当前参数点附近随机选下一点p=0;while p==0Par_new=Par_cur+StepFactor.*range.*(rand(size(lb))-0.5);% 防止越界if sum(Par_new>ub)+sum(Par_new<lb)==0p=1;endend% 检验当前解是否为全局最优解if (objfun_svm(Par_best,train_wine_labels,train_wine,test_wine_labels,test_wine)>...objfun_svm(Par_new,train_wine_labels,train_wine,test_wine_labels,test_wine))% 保留上一个最优解Par_best_cur=Par_best;% 此为新的最优解Par_best=Par_new;end% Metropolis过程if (objfun_svm(Par_cur,train_wine_labels,train_wine,test_wine_labels,test_wine)-...objfun_svm(Par_new,train_wine_labels,train_wine,test_wine_labels,test_wine)>0)% 接受新解Par_cur=Par_new;AcceptPoints=AcceptPoints+1;elsechanger=-1*(objfun_svm(Par_new,train_wine_labels,train_wine,test_wine_labels,test_wine)...-objfun_svm(Par_cur,train_wine_labels,train_wine,test_wine_labels,test_wine))/Boltzmann_con*Temperature0;p1=exp(changer);if p1>randPar_cur=Par_new;AcceptPoints=AcceptPoints+1;endendend
end
%% 结果显示
disp(['最小值在点:',num2str(Par_best)]);
Objval_best= objfun_svm(Par_best,train_wine_labels,train_wine,test_wine_labels,test_wine);
disp(['最小值为:',num2str(Objval_best)]);
%% 显示运行时间
toc
%% SVM_Objective Function
function f=objfun_svm(cv,train_wine_labels,train_wine,test_wine_labels,test_wine)
% cv为长度为2的横向量,即SVM中参数c和v的值cmd = [' -c ',num2str(cv(1)),' -g ',num2str(cv(2))];
model=svmtrain(train_wine_labels,train_wine,cmd); % SVM模型训练
[~,fitness]=svmpredict(test_wine_labels,test_wine,model); % SVM模型预测及其精度
f=1-fitness(1)/100; % 以分类预测错误率作为优化的目标函数值

(广告)欢迎扫描关注微信公众号:Genlovhyy的数据小站(Gnelovy212)

这里写图片描述

这篇关于SA(模拟退火)优化算法MATLAB源码详细中文注解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136695

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Java中的@SneakyThrows注解用法详解

《Java中的@SneakyThrows注解用法详解》:本文主要介绍Java中的@SneakyThrows注解用法的相关资料,Lombok的@SneakyThrows注解简化了Java方法中的异常... 目录前言一、@SneakyThrows 简介1.1 什么是 Lombok?二、@SneakyThrows

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思